

Optimization of continuous two-stage production of biogitan from wastewater of the confectionery industry
https://doi.org/10.15518/isjaee.2025.06.029-062
Abstract
Two-stage anaerobic fermentation is a promising method for producing a mixture of H2 and CH4 (biogas) from various organic waste materials. However, scaling up this process requires optimization of the conditions to maximize the specific yield and rate of gas production, as well as to ensure an optimal ratio of H2 and CH4 in the biogas. In this work, the hydraulic retention time (HRT) and organic load rate (OLR) were varied in the mesophilic acidogenic (RH) and thermophilic methanogenic (R) reactors in order to optimize the continuous two-stage production of biogitan from the wastewater of the confectionery industry. The specific yield of H2 (87,8 ± 20,3 ml/g COD) and the rate of H2 formation (2352 ± 376 ml/(l∙day)) were maximum at an OLR in RH equal to 26,8 g COD/(l∙day). The specific yield of CH4 (286,3 ± 29,1 ml/g COD) was maximum at HRT and OLR in R equal to 2 days and 2,05 g COD/(l·day), respectively, and the rate of CH4 formation (964,6 ± 162 ml/(l·day)) was maximum at HRT and OLR in Requal to 2 days and 4,6 g COD/(l·day), respectively. The optimal composition of biogitan (10% H2, 50,4% CH4 , 39,6% CO2 ) was obtained when RH was operated at an OLR of 12,8 g BOD/(l·day), and R was operated at an HRT of 3 days and an OLR of 1,37 g BOD/(l·day), respectively. In the optimal operating modes, the H2-producing microbial community RH was dominated by Caproiciproducens and Clostridium sensu stricto 12, while R was dominated by syntrophic bacteria Cloacimonadaceae W5, Lentimicrobium, Anaerolinea, and hydrogenotrophic methanogens Methanothermobacter. These results contribute to the further improvement of two-stage anaerobic fermentation for the production of biogas from concentrated wastewater.
About the Authors
E. R. MikheevaRussian Federation
Mikheeva Elsa Ravilevna - Researcher, Laboratory of Resource-Saving Biotechnology, Candidate of Biological Sciences.
Education: Nizhny Novgorod State Technical University n. a. R. E. Alekseev, 2009, chemical technology and biotechnology.
Area of scientific interests: biogas; biohythane; sewage sludge; anaerobic fermentation; biotechnology; methanogenic bacteria; food waste; vortex layer apparatus; microscopy; blood cells; quantum dots; neutrophilic granulocytes.
Publications: more 50
603022, Nizhny Novgorod, Gagarin Avenue 23, Building 5
S. V. Shekhurdina
Russian Federation
Shekhurdina Svetlana Vitalievna - junior researcher of Laboratory of Microbiology of Anthropogenic Habitats, PhD student
Education: Lomonosov Moscow State University (MSU), 2021, Microbiologist.
Area of scientific interests: anaerobic digestion; direct interspecies electron transfer (DIET); anaerobic microorganisms; methanogenic communities; methanogenesis; biogas; anaerobic processing of organic waste.
Publications: more 15
119071, Moscow, Leninsky Prospekt, 33, Building 2
I. V. Katraeva
Russian Federation
Katraeva Inna Valentinovna - candidate of technical sciences, Associate Professor of the department of water supply, sanitation, engineering ecology and chemistry; researcher at the laboratory of Resource-Saving Biotechnologies.
Education: Nizhny Novgorod State University of Architecture and Civil Engineering, 1991, engineer.
Area of scientific interests: anaerobic microorganisms; waste-water treatment; anaerobic-biochemical treatment; anaerobic processing of animal waste; renewable energy sources.
Publications: 134
603950, Nizhny Novgorod, Ilyinskaya Street, 65
A. A. Kovalev
Russian Federation
Kovalev Andrey Alexandrovich - chief researcher of the laboratory of
bioenergy technologies, doctor of technical sciences.
Education: Moscow state University of railway engineering (MIIT), 2009, engineer.
Area of scientific interests: renewable energy; anaerobic digestion of animal waste; biogas production from biomass heat and power plants; heat and mass transfer.
Publications: more 200
109428, Moscow, 1st Institutsky Proyezd, 5
+79263477955
D. A. Kovalev
Russian Federation
Kovalev Dmitry Alexandrovich - head of the
laboratory of bioenergy and supercritical technologies, candidate
of technical sciences.
Education: Moscow state industrial University (MSIU), 2003, engineer.
Area of scientific interests: renewable energy; anaerobic digestion of animal waste; technical innovations in agriculture and environmental protection; the production of biogas from biomass.
Publications: more 200
109428,Moscow, 1st Institutsky Proyezd, 5
E. A. Zhuravleva
Russian Federation
Zhuravleva Elena Alexandrovna - junior researcher Laboratory of Microbiology of Anthropogenic Habitats, postgraduate. PhD
Education: Lomonosov Moscow State University, 2019, microbiologist.
Area of scientific interests: anaerobic microorganisms; methanogenic communities of microorganisms; methanogenesis; organic waste; wastewater treatment; direct interspecies electron transfer; syntrophy.
Publications: more 30
119071, Moscow, Leninsky Prospekt, 33, Building 2
A. A. Laikova
Russian Federation
Laikova Alexandra Alekseevna - junior researcher in Laboratory of Microbiology of Anthropogenic Habitats, PhD student.
Education: M. V. Lomonosov Moscow State University, 2021, Microbiologist.
Area of scientific interests: biohydrogen; biogas; biohythane; sewage sludge; anaerobic fermentation; biotechnology; anaerobic conversion of waste; hydrogen-producing bacteria; methanogenic community.
Publications: more 15
119071, Moscow, Leninsky Prospekt, 33, Building 2
A. A. Ivanenko
Russian Federation
Ivanenko Artem Alexandrovich - engineer in Laboratory of Microbiology of Anthropogenic Habitats, bachelor.
Education: M. V. Lomonosov State University, 2024, ecology and environmental management.
Area of scientific interests: biogas, biohydrogen; anaerobic conversion of waste; biotechnology; methanogenic community; biorefinery.
Publications: more 5
119071, Moscow, Leninsky Prospekt, 33, Building 2
119899, Moscow, Leninskie Gory, 1, Building 12
V. A. Panchenko
Russian Federation
Panchenko Vladimir Anatolyevich - candidate of technical sciences, associate professor of the Department; senior researcher of the Laboratory
Education: Moscow State Technical University named after N. E. Bauman. 2009, engineer.
Area of scientific interests: renewable energy; 3D modeling; electric transport; circular economy and sustainable development.
Publications: 300
127994, Moscow, Obraztsova Street, 9, Building 9
Yu. V. Litti
Russian Federation
Litti Yuri Vladimirovich - Head of Laboratory of Microbiology of Anthropogenic Habitats, Candidate of Biological Sciences.
Education: D. Mendeleev University of Chemical Technology of Russia (MUCTR) 2008, engineer.
Area of scientific interests: anaerobic microorganisms; methanogenic communities of microorganisms; methanogenesis; solid organic waste; wastewater treatment; nitrification; denitrification; anammox process; anammox bacteria.
Publications: more 90
119071, Moscow, Leninsky Prospekt, 33, Building 2
References
1. . Vo T. -P., Lay C. -H., Lin C. -Y. Effects of Hydraulic Retention Time on Biohythane Production via Single-Stage Anaerobic Fermentation in a Two-Compartment Bioreactor // Bioresource Technology. 2019; 292:121869. https://doi.org/https://doi.org/10.1016/j.biortech.2019.121869.
2. . Lay C. -H., Vo T. -P., Lin P. -Y., Abdul P. M., Liu C. -M., Lin C. -Y. Anaerobic Hydrogen and Methane Production from Low-Strength Beverage Waste-water // International Journal of Hydrogen Energy. 2019; 44 (28):14351-14361. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.03.165.
3. . Bolzonella D., Battista F., Cavinato C., Gottardo M., Micolucci F., Lyberatos G., Pavan P. Recent Developments in Biohythane Production from Household Food Wastes: A Review // Bioresource Technology. 2018; 257:311-319. https://doi.org/https://doi.org/10.1016/j.biortech.2018.02.092.
4. . Ghimire A., Kumar G., Sivagurunathan P., Shobana S., Saratale G. D., Kim H. W., Luongo V., Esposito G., Munoz R. Bio-Hythane Production from Microalgae Biomass: Key Challenges and Potential Opportunities for Algal Bio-Refineries // Bioresource Technology. 2017; 241:525-536. https://doi.org/https://doi.org/10.1016/j.biortech.2017.05.156.
5. . Ta D. T., Lin C. -Y., Ta T. M. N., Chu C. -Y. Biohythane Production via Single-Stage Anaerobic Fermentation Using Entrapped Hydrogenic and Methanogenic Bacteria // Bioresource Technology. 2020; 300:122702. https://doi.org/https://doi.org/10.1016/j.biortech.2019.122702.
6. . Liu Z., Zhang C., Lu Y., Wu X., Wang L., Wang L., Han B., Xing X. -H. States and Challenges for High-Value Biohythane Production from Waste Biomass by Dark Fermentation Technology // Bioresource Technology. 2013; 135:292-303. https://doi.org/https://doi.org/10.1016/j.biortech.2012.10.027.
7. . Hans M., Kumar S. Biohythane Production in Two-Stage Anaerobic Digestion System // International Journal of Hydrogen Energy. 2019.
8. . Kumar G., Shobana S., Nagarajan D., Lee D. -J., Lee K. -S., Lin C. -Y. Chen C. -Y., Chang J. -S. Biomass Based Hydrogen Production by Dark Fermentation – Recent Trends and Opportunities for Greener Processes // Current Opinion in Biotechnology. 2018; 50:136-145. https://doi.org/https://doi.org/10.1016/j.cop-bio.2017.12.024.
9. . Argun H., Kargi F. Bio-Hydrogen Production by Different Operational Modes of Dark and Photo-Fermentation: An Overview // International Journal of Hydrogen Energy. 2011; 36 (13):7443-7459. https://doi.org/https://doi.org/10.1016/j.ijhydene.2011.03.116.
10. . Massanet-Nicolau J., Dinsdale R., Guwy A., Shipley G. Utilising Biohydrogen to Increase Methane Production, Energy Yields and Process Efficiency via Two Stage Anaerobic Digestion of Grass // Bioresource Technology. 2015; 189:379-383. https://doi.org/https://doi.org/10.1016/j.biortech.2015.03.116.
11. . Schievano A., Tenca A., Lonati S., Manzini E., Adani F. Can Two-Stage Instead of One-Stage Anaerobic Digestion Really Increase Energy Recovery from Biomass? //Applied Energy 2014; 124:335-342. https://doi.org/https://doi.org/10.1016/j.apenergy.2014.03.024.
12. . Khanal S. K., Chen W. -H., Li L., Sung S. Biological Hydrogen Production: Effects of PH and Intermediate Products // International Journal of Hydrogen Energy. 2004; 29 (11):1123-1131. https://doi.org/https://doi.org/10.1016/j.ijhydene.2003.11.002.
13. . Fang H. H. P., Liu H. Effect of PH on Hydrogen Production from Glucose by a Mixed Culture // Bioresource Technology. 2002; 82 (1):87-93. https://doi.org/https://doi.org/10.1016/S0960-8524(01)00110-9.
14. . Ward A. J., Hobbs P. J., Holliman P. J., Jones D. L. Optimisation of the Anaerobic Digestion of Agri cultural Resources // Bioresource Technology. 2008; 99 (17):7928-7940. https://doi.org/https://doi.org/10.1016/j.biortech.2008.02.044.
15. . Wang J., Wan W. Factors Influencing Fermentative Hydrogen Production: A Review // International Journal of Hydrogen Energy. 2009; 34:799-811. https://doi.org/10.1016/j.ijhydene.2008.11.015.
16. . Arslan C., Sattar A., Changying J., Nasir A., Ali Mari I., Zia Bakht M. Impact of PH Management Interval on Biohydrogen Production from Organic Fraction of Municipal Solid Wastes by Mesophilic Thermophilic Anaerobic Codigestion // BioMed Research International. 2015; 2015:590753. https://doi.org/10.1155/2015/590753. International Publishing House of scientific periodicals «Space»
17. . Wang B., Li Y., Wang D., Liu R., Wei Z., Ren N. Simultaneous Coproduction of Hydrogen and Methane from Sugary Wastewater by an “ACSTRH–UASB-Met” System // International Journal of Hydrogen Energy. 2013; 38 (19):7774-7779. https://doi.org/https://doi.org/10.1016/j.ijhydene.2013.04.065.
18. . Mamimin C., Singkhala A., Kongjan P., Suraraksa B., Prasertsan P., Imai T., O-Thong S. Two-Stage Thermophilic Fermentation and Mesophilic Methanogen Process for Biohythane Production from Palm Oil Mill Effluent // International Journal of Hydrogen Energy. 2015; 40 (19):6319-6328. https://doi.org/https://doi.org/10.1016/j.ijhydene.2015.03.068.
19. . Aashabharathi M., Kumar S. D., Shobana S., Karthigadevi G., Srinidhiy C. A., Subbaiya R., Karmegam N., Kim W., Govarthanan M. Biohythane Production Techniques and Recent Advances for Green Environment – A Comprehensive Review // Process Safety and Environmental Protection. 2024; 184:400-410. https://doi.org/10.1016/j.psep.2024.01.099.
20. . Seengenyoung J., Mamimin C., Prasertsan P., O-Thong S. Pilot-Scale of Biohythane Production from Palm Oil Mill Effluent by Two-Stage Thermophilic Anaerobic Fermentation // International Journal of Hydrogen Energy. 2019; 44 (6):3347-3355. https://doi.org/10.1016/j.ijhydene.2018.08.021.
21. . Beal L. J., Raman D. R. Sequential Two-Stage Anaerobic Treatment of Confectionery Wastewater // Journal of Agricultural Engineering Research. 2000; 76 (2):211-217. https://doi.org/https://doi.org/10.1006/jaer.2000.0555.
22. . Mikheeva E. R., Katraeva I. V., Vorozhtsov D. L., Kovalev D. A., Kovalev A. A., Grigoriev V. S., Litti Y. V. Dark Fermentative Biohydrogen Production from Confectionery Wastewater in Continuous-Flow Reactors // International Journal of Hydrogen Energy. 2022; 47 (53):22348-22358.https://doi.org/10.1016/j.ijhydene.2022.05.131.
23. . Van Ginkel S. W., Oh S. -E., Logan B. E. Biohydrogen Gas Production from Food Processing and Domestic Wastewaters // International Journal of Hydrogen Energy. 2005; 30 (15):1535-1542. https://doi.org/https://doi.org/10.1016/j.ijhydene.2004.09.017.
24. . Dębowski M., Kisielewska M., Kazimierowicz J., Zieliński M. Methane Production from Confectionery Wastewater Treated in the Anaerobic Labyrinth-Flow Bioreactor // Energies. 2023; 16 (1). https://doi.org/10.3390/en16010571.
25. . Buitrón G., Kumar G., Martinez-Arce A., Moreno G. Hydrogen and Methane Production via a Two-Stage Processes (H2-SBR + CH4-UASB) Using Tequila Vinasses // International Journal of Hydrogen Energy. 2014; 39 (33):19249-19255.https://doi.org/10.1016/j.ijhydene.2014.04.139.
26. . Yang H., Si B., Huang S., Liu Z., Zhang Y. Effect of PH Control on Biohythane Production and Microbial Structure in an Innovative Multistage Anaerobic Hythane Reactor (MAHR) // International Journal of Hydrogen Energy. 2020; 45 (7):4193-4204. https://doi.org/10.1016/j.ijhydene.2019.12.046.
27. . Mikheeva E. R., Katraeva I. V., Kovalev A. A., Kovalev D. A., Nozhevnikova A. N., Panchenko V., Fiore U., Litti Yu. V. The Start-Up of Continuous Biohydrogen Production from Cheese Whey: Comparison of Inoculum Pretreatment Methods and Reactors with Moving and Fixed Polyurethane Carriers // Applied Sciences. 2021; 11 (2). https://doi.org/10.3390/app11020510.
28. . Kovalev A. A., Mikheeva E. R., Katraeva I. V., Kovalev D. A., Kozlov A. M., Litti Yu. V. Bioenergy Recovery from Two-Stage Mesophilic-Thermophilic Anaerobic Digestion of Cheese Whey // International Journal of Hydrogen Energy. 2023; 48 (12):4676-4685. https://doi.org/10.1016/j.ijhydene.2022.11.003.
29. . Meyer J., Rein P., Turner P., Mathias K., McGregor C. Good Management Practices Manual for the Cane Sugar Industry // The International Finance Corporation 2011; 1:696.
30. . Ndobeni A., Oyekola O., Welz P. J. Organic Removal Rates and Biogas Production of an Upflow Anaerobic Sludge Blanket Reactor Treating Sugarcane Molasses // South African Journal of Chemical Engineering. 2019; 28:1-7.https://doi.org/10.1016/j.sajce.2019.01.002.
31. . Khanal S. K., Tirta Nindhia T. G., Nitayavardhana S. Chapter 11 – Biogas from Wastes: Processes and Applications / Taherzadeh M. J., Bolton K., Wong J., Pandey A. B. T. -S. R. R. and Z. W. A., Eds. // Elsevier. – 2019, pp. 165-174. https://doi.org/10.1016/B978-0-444-64200-4.00011-6.
32. . Labatut R. A., Pronto J. L. Chapter 4 – Sustainable Waste-to-Energy Technologies: Anaerobic Digestion / Trabold T. A., Babbitt C. W. B. T. -S. F. W. -T. S., Eds. // Academic Press. – 2018, pp. 47-67. https://doi.org/10.1016/B978-0-12-811157-4.00004-8.
33. . Mikheeva E., Katraeva I., Vorozhtsov D., Litti Yu., Nozhevnikova A. Efficiency of Two-Phase Anaerobic Fermentation and the Physicochemical Properties of the Organic Fraction of Municipal Solid Waste Processed in a Vortex-Layer Apparatus // Applied Biochemistry and Microbiology. 2020; 56:736-742. https://doi.org/10.1134/S0003683820060113.
34. . Fadrosh D. W., Ma B., Gajer P., Sengamalay N., Ott S., Brotman R. M., Ravel J. An Improved Dual-Indexing Approach for Multiplexed 16S RRNA Gene Sequencing on the Illumina MiSeq Platform // Microbiome. 2014; 2 (1):6. https://doi.org/10.1186/2049-2618-2-6.
35. . W., H. L., A., W. H., Sverker L., E., J. H., Mathilda L., Sandra R., Lars E., F., A. A. DegePrime, a Program for Degenerate Primer Design for Broad-Taxonomic-Range PCR in Microbial Ecology Studies // Applied and Environmental Microbiology. 2014; 80 (16):5116-5123. https://doi.org/10.1128/AEM.01403-14.
36. . Merkel A. Y., Tarnovetskii I. Y., Podosokorskaya O. A., Toshchakov S. V. Analysis of 16S RRNA Primer Systems for Profiling of Thermophilic Microbial Communities // Microbiology. 2019; 88 (6):671-680. https://doi.org/10.1134/S0026261719060110.
37. . Kallistova A., Merkel A., Kanapatskiy T., Boltyanskaya Y., Tarnovetskii I., Perevalova A., Kevbrin V., Samylina O., Pimenov N. Methanogenesis in the Lake Elton Saline Aquatic System // Extremophiles. 2020; 24 (4):657-672. https://doi.org/10.1007/s00792-020-01185-x.
38. . Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data // Nature Methods. 2016; 13 (7):581-583. https://doi.org/10.1038/nmeth.3869.
39. . Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools // Nucleic Acids Research. 2013; 41 (D1): D590-D596. https://doi.org/10.1093/nar/gks1219.
40. . Laikova A. A., Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Shekhurdina S. V., Litti Yu. V. The Feasibility of Single-Stage Biohythane Production in a Semi-Continuous Thermophilic Bioreactor: Influence of Operating Parameters on the Process Kinetics and Microbial Community Dynamics // International Journal of Hydrogen Energy. 2024; 55:1486-1494. https://doi.org/10.1016/j.ijhydene.2023.12.140.
41. . Krishnan S., Singh L., Sakinah M., Thakur S., Wahid Z. A., Sohaili J. Effect of Organic Loading Rate on Hydrogen (H2) and Methane (CH4) Production in Two-Stage Fermentation under Thermophilic Conditions Using Palm Oil Mill Effluent (POME) // Energy for Sustainable Development. 2016; 34:130-138. https://doi.org/10.1016/j.esd.2016.07.002.
42. . Venetsaneas N., Antonopoulou G., Stamatelatou K., Kornaros M., Lyberatos G. Using Cheese Whey for Hydrogen and Methane Generation in a Two-Stage Continuous Process with Alternative PH Controlling Approaches // Bioresource Technology. 2009; 100 (15):3713-3717. https://doi.org/10.1016/j.biortech.2009.01.025.
43. . Rangel C., Sastoque J., Calderon J., Mosquera J., Velasquez P., Cabezab I., Acevedo P. Hydrogen Production by Dark Fermentation Process: Effect of Initial Organic Load // Chemical Engineering Transactions. 2020; 79 (February):133-138. https://doi.org/10.3303/CET2079023.
44. . Kanchanasuta S., Pisutpaisal N. Improvement of Glycerol Waste Utilization by Co-Feedstock with Palm Oil Decanter Cake on Biohydrogen Fermentation // International Journal of Hydrogen Energy. 2017; 42 (5):3447-3453. https://doi.org/10.1016/j.ijhydene.2016.12.134.
45. . Yun J., Cho K. -S. Effects of Organic Loading Rate on Hydrogen and Volatile Fatty Acid Production and Microbial Community during Acidogenic Hydrogenesis in a Continuous Stirred Tank Reactor Using Molasses Wastewater // Journal of Applied Microbiology. 2016; 121 (6):1627-1636. https://doi.org/10.1111/jam.13316.
46. . Nualsri C., Kongjan P., Reungsang A., Imai T. Effect of Biogas Sparging on the Performance of Bio-Hydrogen Reactor over a Long-Term Operation // PLOS ONE 2017; 12 (2):e0171248.
47. . Mari A. G., Andreani C. L., Tonello T. U., Leite L. C. C., Fernandes J. R., Lopes D. D., Rodrigues J. A. D., Gomes S. D. Biohydrogen and Biomethane Production from Cassava Wastewater in a Two-Stage Anaerobic Sequencing Batch Biofilm Reactor // International Journal of Hydrogen Energy. 2020; 45 (8):5165-5174. https://doi.org/10.1016/j.ijhydene.2019.07.054.
48. . Nacheva P. M., Chávez G. M., Chacón J. M., Chuil A. C. Treatment of Cane Sugar Mill Wastewater in an Upflow Anaerobic Sludge Bed Reactor // Water Science and Technology. 2009; 60 (5):347-1352. https://doi.org/10.2166/wst.2009.402.
49. . Ferraz Júnior A. D. N., Etchebehere C., Zaiat M. High Organic Loading Rate on Thermophilic Hydrogen Production and Metagenomic Study at an Anaerobic Packed-Bed Reactor Treating a Residual Liquid Stream of a Brazilian Biorefinery // Bioresource Technology. 2015; 186:81-88. https://doi.org/10.1016/j.biortech.2015.03.035.
50. . Thanikal J. V., Torrijos M., Habouzit F., Moletta R. Treatment of Distillery Vinasse in a High Rate Anaerobic Reactor Using Low Density Polyethylene Supports // Water Science and Technology. 2007; 56 (2): 17-24. https://doi.org/10.2166/wst.2007.467.
51. . Sosa-villalobos C., Rustrian E., Houbron E. Assessment of a Fixed Biomass Anaerobic Reactor for the Treatment of Vinasse // International Journal of Environmental Research. 2015; 9:1157-1162.
52. . Fan K. -S., Kan N., Lay J. Effect of Hydraulic Retention Time on Anaerobic Hydrogenesis in CSTR // Bioresource Technology. 2006; 97 (1):84-89.https://doi.org/10.1016/j.biortech.2005.02.014.
53. . Song W., Cheng J., Zhou J., Xie B., Su H., Cen K. Cogeneration of Hydrogen and Methane from Protein-Mixed Food Waste by Two-Phase Anaerobic Process // International Journal of Hydrogen Energy. 2010; 35 (7):3141-3146. https://doi.org/10.1016/j.ijhydene.2009.09.102.
54. . Van Ginkel S. W., Logan B. Increased Biological Hydrogen Production with Reduced Organic Loading // Water Research. 2005; 39 (16):3819-3826.https://doi.org/10.1016/j.watres.2005.07.021.
55. . Hallenbeck P. C., Ghosh D. Advances in Fermentative Biohydrogen Production: The Way Forward? // Trends in Biotechnology. 2009; 27 (5):287-297. https://doi.org/10.1016/j.tibtech.2009.02.004.
56. . Mamimin C., Prasertsan P., Kongjan P., O-Thong S. Effects of Volatile Fatty Acids in Biohydrogen Effluent on Biohythane Production from Palm Oil Mill Effluent under Thermophilic Condition // Electronic Journal of Biotechnology. 2017; 29:78-85. https://doi.org/10.1016/j.ejbt.2017.07.006.
57. . Hao P. Sequential Hydrogen and Methane Coproduction from Sugary Wastewater Treatment by “CST-RHyd-UASBMet” System // AIP Conference Proceedings. 2017; 1890 (1):40107. https://doi.org/10.1063/1.5005309.
58. . Wang X., Zhao Y. A Bench Scale Study of Fermentative Hydrogen and Methane Production from Food Waste in Integrated Two-Stage Process // International Journal of Hydrogen Energy. 2009; 34 (1):245-254. https://doi.org/10.1016/j.ijhydene.2008.09.100.
59. . Alibardi L., Cossu R. Effects of Carbohydrate, Protein and Lipid Content of Organic Waste on Hydrogen Production and Fermentation Products // Waste Management. 2016; 47:69-77. https://doi.org/10.1016/j.wasman.2015.07.049.
60. . Hernández M. A., González A. J., Suárez F., Ochoa C., Candela A. M., Cabeza I. Assessment of the Biohydrogen Production Potential of Different Organic Residues in Colombia: Cocoa Waste, Pig Manure and Coffee Mucilage // Chemical Engineering Transactions. 2018; 65:247-252. https://doi.org/10.3303/CET1865042.
61. . Pérez-Rangel M., Barboza-Corona J. E., Valdez-Vazquez I. Effect of the Organic Loading Rate and Temperature on Hydrogen Production via Consolidated Bioprocessing of Raw Lignocellulosic Substrate // International Journal of Hydrogen Energy. 2023; 48 (92):35907-35918. https://doi.org/10.1016/j.ijhydene.2023.05.329.
62. . Provenzano M. R., Cavallo O., Malerba A. D., Fabbri C., Zaccone C. Unravelling (Maize Silage) Digestate Features throughout a Full-Scale Plant: A Spectroscopic and Thermal Approach // Journal of Cleaner Production. 2018; 193:372-378. https://doi.org/10.1016/j.jclepro.2018.05.081.
63. . Jobling Purser B. J., Thai S. -M., Fritz T., Esteves S. R., Dinsdale R. M., Guwy A. J. An Improved Titration Model Reducing over Estimation of Total Volatile Fatty Acids in Anaerobic Digestion of Energy Crop, Animal Slurry and Food Waste // Water Research. 2014; 61:162-170. https://doi.org/10.1016/j.watres.2014.05.020.
64. . Nkuna R., Roopnarain A., Rashama C., Adeleke R. Insights into Organic Loading Rates of Anaerobic Digestion for Biogas Production: A Review // Critical reviews in biotechnology. 2021; 42:1-21. https://doi.org/10.1080/07388551.2021.1942778.
65. . Mézes L., Biró G., Sulyok E., Petis M., Borbely J., Tamas J. Novel Approach of the Basis of FOS/TAC Method; 2011.
66. . Wan C., Li Y. Effectiveness of Microbial Pretreatment by Ceriporiopsis Subvermispora on Different Biomass Feedstocks // Bioresource Technology. 2011; 102 (16):7507-7512. https://doi.org/https://doi.org/10.1016/j.biortech.2011.05.026.
67. . Allen E., Wall D. M., Herrmann C., Murphy J. D. Investigation of the Optimal Percentage of Green Seaweed That May Be Co-Digested with Dairy Slurry to Produce Gaseous Biofuel // Bioresource Technology. 2014; 170:436-444. https://doi.org/10.1016/j.biortech.2014.08.005.
68. . Di Maria F., Sordi A., Cirulli G., Gigliotti G., Massaccesi L., Cucina M. Co-Treatment of Fruit and Vegetable Waste in Sludge Digesters. An Analysis of the Relationship among Bio-Methane Generation, Process Stability and Digestate Phytotoxicity // Waste Management. 2014; 34 (9):1603-1608. https://doi.org/10.1016/j.wasman.2014.05.017.
69. . Scano E. A., Asquer C., Pistis A., Ortu L., Demontis V., Cocco D. Biogas from Anaerobic Digestion of Fruit and Vegetable Wastes: Experimental Results on Pilot-Scale and Preliminary Performance Evaluation of a Full-Scale Power Plant // Energy Conversion and Management. 2014; 77:22-30. https://doi.org/10.1016/j.enconman.2013.09.004.
70. . Izumi K., Okishio Y., Nagao N., Niwa C., Yamamoto S., Toda T. Effects of Particle Size on Anaerobic Digestion of Food Waste // International Biodeterioration & Biodegradation. 2010; 64 (7):601-608. https://doi.org/10.1016/j.ibiod.2010.06.013.
71. . Rajagopal R., Massé D. I., Singh G. A Critical Review on Inhibition of Anaerobic Digestion Process by Excess Ammonia // Bioresource Technology. 2013; 143:632-641. https://doi.org/10.1016/j.biortech.2013.06.030.
72. . Park J. -G., Lee B., Jo S. -Y., Lee J. -S., Jun H. -B. Control of Accumulated Volatile Fatty Acids by Recycling Nitrified Effluent // Journal of Environmental Health Science and Engineering. 2018; 16 (1):19-25. https://doi.org/10.1007/s40201-018-0291-9.
73. . Wang Y., Zhang Y., Wang J., Meng L. Effects of Volatile Fatty Acid Concentrations on Methane Yield and Methanogenic Bacteria // Biomass and Bioenergy. 2009; 33 (5):848-853. https://doi.org/10.1016/j.biombioe.2009.01.007.
74. . Zuo Z., Wu S., Zhang W., Dong R. Effects of Organic Loading Rate and Effluent Recirculation on the Performance of Two-Stage Anaerobic Digestion of Vegetable Waste // Bioresource Technology. 2013; 146:556-561. https://doi.org/10.1016/j.biortech.2013.07.128.
75. . Sarkar O., Venkata Mohan S. Deciphering Acidogenic Process towards Biohydrogen, Biohythane, and Short Chain Fatty Acids Production: Multi-Output Optimization Strategy // Biofuel Research Journal. 2016; 11:458-469. https://doi.org/10.18331/BRJ2016.3.3.5.
76. . Wu B., Zhang X., Bao D., Xu Y., Zhang S., Deng L. Biomethane Production System: Energetic Analysis of Various Scenarios // Bioresource Technology. 2016; 206:155-163. https://doi.org/10.1016/j.biortech.2016.01.086.
77. . Li D., Yuan Z., Sun Y., Ma L., Li L. Sequential Anaerobic Fermentative Production of Hydrogen and Methane from Organic Fraction of Municipal Solid Waste*: Sequential Anaerobic Fermentative Production of Hydrogen and Methane from Organic Fraction of Municipal Solid Waste // Chinese Journal of Appplied Environmental Biology. 2010; 2009:250-257. https://doi.org/10.3724/SP.J.1145.2009.00250.
78. . Xiao B., Qin Y., Wu J., Chen H., Yu P., Liu J., Li Y. -Y. Comparison of Single-Stage and Two-Stage Thermophilic Anaerobic Digestion of Food Waste: Performance, Energy Balance and Reaction Process // Energy Conversion and Management. 2018; 156:215-223. https://doi.org/10.1016/j.enconman.2017.10.092.
79. . Schievano A., Tenca A., Scaglia B., Merlino G., Rizzi A., Daffonchio D., Oberti R., Adani F. Two-Stage vs Single-Stage Thermophilic Anaerobic Digestion: Comparison of Energy Production and Biodegradation Efficiencies // Environmental Science & Technology. 2012; 46 (15):8502-8510. https://doi.org/10.1021/es301376n.
80. . Kongjan P., O-Thong S., Angelidaki I. Hydrogen and Methane Production from Desugared Molasses Using a Two-Stage Thermophilic Anaerobic Process // Engineering in Life Sciences. 2013; 13 (2):118-125. https://doi.org/10.1002/elsc.201100191.
81. . Bundhoo M. A. Z., Mohee R., Hassan M. A. Effects of Pre-Treatment Technologies on Dark Fermentative Biohydrogen Production: A Review // Journal of Environmental Management. 2015; 157:20-48. https://doi.org/10.1016/j.jenvman.2015.04.006.
82. . Tanaka H., Doesburg K., Iwasaki T., Mierau I. Screening of Lactic Acid Bacteria for Bile Salt Hydrolase Activity // Journal of Dairy Science. 1999; 82 (12):2530-2535. https://doi.org/10.3168/jds.S0022-0302(99)75506-2.
83. . Detman A., Laubitz D., Chojnacka A., Kiela P. R., Salamon A., Barberán A., Chen Y., Yang F., Błaszczyk M. K., Sikora A. Dynamics of Dark Fermentation Microbial Communities in the Light of Lactate and Butyrate Production // Microbiome. 2021; 9 (1):158. https://doi.org/10.1186/s40168-021-01105-x.
84. . Tang T., Chen Y., Liu M., Du Y., Tan Y. Effect of PH on the Performance of Hydrogen Production by Dark Fermentation Coupled Denitrification // Environmental Research. 2022; 208:112663. https://doi.org/10.1016/j.envres.2021.112663.
85. . Lin Q., Dong X., Luo J., Zeng Q., Ma J., Wang Z., Chen G., Guo G. Electrochemical Pretreatment Enhancing Co-Fermentation of Waste Activated Sludge and Food Waste into Volatile Fatty Acids: Performance, Microbial Community Dynamics and Metabolism // Bioresource Technology. 2022; 361:127736. https://doi.org/10.1016/j.biortech.2022.127736.
86. . Cardoso Ribeiro J., Mota V. T., Maia de Oliveira V., Dacanal G. C., Zaiat M. Hydrogen and Organic Acid Production from Dark Fermentation of Sugarcane Vinasse without Buffers in Mesophilic and Thermophilic Conditions // Journal of Chemical Technology & Biotechnology. 2021, n/a (n/a). https://doi.org/10.1002/jctb.7003.
87. . Cabrol L., Marone A., Tapia-Venegas E., Steyer J. -P., Ruiz-Filippi G., Trably E. Microbial Ecology of Fermentative Hydrogen Producing Bioprocesses: Useful Insights for Driving the Ecosystem Function // FEMS Microbiology Reviews. 2017; 41:158-181. https://doi.org/10.1093/femsre/fuw043.
88. . Li Z., Gu J., Ding J., Ren N., Xing D. Molecular Mechanism of Ethanol-H2 Co-Production Fermentation in Anaerobic Acidogenesis: Challenges and Perspectives // Biotechnology Advances. 2021; 46:107679. https://doi.org/10.1016/j.biotechadv.2020.107679.
89. . Mugnai G., Borruso L., Mimmo T., Cesco S., Luongo V., Frunzo L., Fabbricino M., Pirozzi F., Cappitelli F., Villa F. Dynamics of Bacterial Communities and Substrate Conversion during Olive-Mill Waste Dark Fermentation: Prediction of the Metabolic Routes for Hydrogen Production // Bioresource Technology. 2021; 319:124157. https://doi.org/10.1016/j.biortech.2020.124157.
90. . Niu C., Pan Y., Lu X., Wang S., Zhang Z., Zheng C., Tan Y., Zhen G., Zhao Y., Li Y. -Y. Mesophilic Anaerobic Digestion of Thermally Hydrolyzed Sludge in Anaerobic Membrane Bioreactor: Long-Term Performance, Microbial Community Dynamics and Membrane Fouling Mitigation // Journal of Membrane Science. 2020; 612:118264. https://doi.org/10.1016/j.memsci.2020.118264.
91. . Fu X., Jin X., Pan C., Ye R., Wang Q., Wang H., Lu W. Enhanced Butyrate Production by Transition Metal Particles during the Food Waste Fermentation // Bioresource Technology. 2019; 291:121848. https://doi.org/10.1016/j.biortech.2019.121848.
92. . Litti Yu. V., Potekhina M. A., Zhuravleva E. A., Vishnyakova A. V., Gruzdev D. S., Kovalev A. A., Kovalev D. A., Katraeva I. V., Parshina S. N. Dark Fermentative Hydrogen Production from Simple Sugars and Various Wastewaters by a Newly Isolated Thermoanaerobacterium Thermosaccharolyticum SP-H2 // International Journal of Hydrogen Energy. 2022; 47 (58):24310-24327. https://doi.org/10.1016/j.ijhydene.2022.05.235.
93. . Bundhoo M. A. Z., Mohee R. Inhibition of Dark Fermentative Bio-Hydrogen Production: A Review // International Journal of Hydrogen Energy. 2016; 41 (16):6713-6733. https://doi.org/10.1016/j.ijhydene.2016.03.057.
94. . Dauptain K., Trably E., Santa-Catalina G., Bernet N., Carrere H. Role of Indigenous Bacteria in Dark Fermentation of Organic Substrates // Bioresource Technology. 2020; 313:123665. https://doi.org/10.1016/j.biortech.2020.123665.
95. . Kovalev A. A., Kovalev D. A., Karaeva J. V., Vivekanand V., Pareek N., Masakapalli S. K., Osmonov O. M., Zhuravleva E. A., Laikova A. A., Shekhurdina S. V., Litti Yu. V. Innovative Organic Waste Pretreatment Approach for Efficient Anaerobic Bioconversion: Effect of Recirculation Ratio at Pre-Processing in Vortex Layer Apparatus on Biogas Production // International Journal of Hydrogen Energy. 2024; 53:208-217.https://doi.org/10.1016/j.ijhydene.2023.12.044.
96. . Zhang L., Loh K. -C., Sarvanantharajah S., Tong Y. W., Wang C. -H., Dai Y. Mesophilic and Thermophilic Anaerobic Digestion of Soybean Curd Residue for Methane Production: Characterizing Bacterial and Methanogen Communities and Their Correlations with Organic Loading Rate and Operating Temperature // Bioresource Technology. 2019; 288:121597. https://doi.org/10.1016/j.biortech.2019.121597.
97. . Wasserfallen A., Nölling J., Pfister P., Reeve J. N., Macario E. Phylogenetic Analysis of 18 Thermophilic Methanobacterium Isolates Supports the Proposals to Create a New Genus, Methanothermobacter Gen. Nov., and to Reclassify Several Isolates in Three Species, Methanothermobacter Thermautotrophicus Comb. Nov., Methanothermobacter Wolfeii Comb. Nov., and Methanothermobacter Marburgensis Sp. Nov. // International Journal of Systematic and Evolutionary Microbiology. 2000; 50 Pt 1:43-53. https://doi.org/10.1099/00207713-50-1-43.
98. . Hao L., Lü F., Mazéas L., Desmond-Le Quéméner E., Madigou C., Guenne A., Shao L., Bouchez T., He P. Stable Isotope Probing of Acetate Fed Anaerobic Batch Incubations Shows a Partial Resistance of Acetoclastic Methanogenesis Catalyzed by Methanosarcina to Sudden Increase of Ammonia Level // Water Research. 2015; 69:90-99. https://doi.org/10.1016/j.watres.2014.11.010.
99. . Qin S., Wainaina S., Liu H., Soufiani A. M., Pandey A., Zhang Z., Awasthi M. K., Taherzadeh M. J. Microbial Dynamics during Anaerobic Digestion of Sewage Sludge Combined with Food Waste at High Organic Loading Rates in Immersed Membrane Bioreactors // Fuel. 2021; 303:121276. https://doi.org/10.1016/j.fuel.2021.121276.
100. . Hebecker S., Lorenzo C., Hoffmann S., Walther J., Storbeck S., Piekarski T., Tindall B., Wray V., Nimtz M., Moser J. Adaptation of Pseudomona Aeruginosa to Various Conditions Includes TRNA-Dependent Formation of Alanyl-Phosphatidylglycerol // Molecular microbiology. 2009; 71:551-565. https://doi.org/10.1111/j.1365-2958.2008.06562.x.
101. . Buettner C., Von Bergen M., Jehmlich N., Noll M. Pseudomonas Spp. Are Key Players in Agricultural Biogas Substrate Degradation // Scientific Reports. 2019; 9. https://doi.org/10.1038/s41598-019-49313-8.
102. . Li C., He P., Hao L., Lü F., Shao L., Zhang H. Diverse Acetate-Oxidizing Syntrophs Contributing to Biogas Production from Food Waste in Full-Scale Anaerobic Digesters in China // Renewable Energy. 2022; 193:240-250. https://doi.org/10.1016/j.renene.2022.04.143.
103. . Mahdy A., Bi S., Song Y., Qiao W., Dong R. Overcome Inhibition of Anaerobic Digestion of Chicken Manure under Ammonia-Stressed Condition by Lowering the Organic Loading Rate // Bioresource Technology Reports. 2020; 9:100359. https://doi.org/10.1016/j.biteb.2019.100359.
104. . Qian D. -K., Geng Z. -Q., Sun T., Dai K., Zhang W., Jianxiong Zeng R., Zhang F. Caproate Production from Xylose by Mesophilic Mixed Culture Fermentation // Bioresource Technology. 2020; 308:123318. https://doi.org/10.1016/j.biortech.2020.123318.
105. . Liu Y., Qiao J. -T., Yuan X. -Z., Guo R. -B., Qiu Y. -L. Hydrogenispora Ethanolica Gen. Nov., Sp Nov., an Anaerobic Carbohydrate-Fermenting Bacterium from Anaerobic Sludge // International Journal of Systematic and Evolutionary Microbiology. 2014; 64. https://doi.org/10.1099/ijs.0.060186-0.
106. . de Leeuw K., de Smit S., van Oossanen S., Moerland M., Buisman C., Strik D. Methanol-Based Chain Elongation with Acetate to n-Butyrate and Isobutyrate at Varying Selectivities Dependent on PH. ACS Sustainable Chemistry & Engineering 2020, XXXX. https://doi.org/10.1021/acssuschemeng.0c00907.
107. . Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. The Phylogeny of the Genus Clostridium: Proposal of Five New Genera and Eleven New Species Combinations // International Journal of Systematic and Evolutionary Microbiology. 1994; 44 (4):812-826. https://doi.org/https://doi.org/10.1099/00207713-44-4-812.
108. . Ao T., Li R., Chen Y., Li C., Li Z., Liu X., Ran Y., Li D. Anaerobic Thermophilic Digestion of Maotai-Flavored Distiller’s Grains: Process Performance and Microbial Community Dynamics // Energy & Fuels. 2019; 33. https://doi.org/10.1021/acs.energyfuels.9b02582.
109. . Jiang M., Qiao W., Wang Y., Zou T., Lin M., Dong R. Balancing Acidogenesis and Methanogenesis Metabolism in Thermophilic Anaerobic Digestion of Food Waste under a High Loading Rate // Science of The Total Environment. 2022; 824:153867. https://doi.org/10.1016/j.scitotenv.2022.153867.
110. . Gagliano M. C., Braguglia C., Petruccioli M., Rossetti S. Ecology and Biotechnological Potential of the Thermophilic Fermentative Coprothermobacter Spp // FEMS Microbiology Ecology. 2015; 91. https://doi.org/10.1093/femsec/fiv018.
111. . Li B. -Y., Xia Z. -Y., Gou M., Sun Z. -Y., Huang Y. -L., Jiao S. -B., Dai W. -Y., Tang Y. -Q. Production of Volatile Fatty Acid from Fruit Waste by Anaerobic Digestion at High Organic Loading Rates: Performance and Microbial Community Characteristics // Bioresource Technology. 2022; 346:126648.https://doi.org/10.1016/j.biortech.2021.126648.
112. . Lee J., Koo T., Yulisa A., Hwang S. Magnetite as an Enhancer in Methanogenic Degradation of Volatile Fatty Acids under Ammonia-Stressed Condition // Journal of Environmental Management. 2019; 241:418-426.https://doi.org/10.1016/j.jenvman.2019.04.038.
113. . Greses S., Tomás-Pejó E., González-Fernández C. Food Waste Valorization into Bioenergy and Bioproducts through a Cascade Combination of Bioprocesses Using Anaerobic Open Mixed Cultures // Journal of Cleaner Production. 2022; 372:133680. https://doi.org/10.1016/j.jclepro.2022.133680.
114. . Cai C., Li L., Hua Y., Liu H., Dai X. Ferroferric Oxide Promotes Metabolism in Anaerolineae Other than Microbial Syntrophy in Anaerobic Methanogenesis of Antibiotic Fermentation Residue // Science of The Total Environment. 2021; 758:143601. https://doi.org/10.1016/j.scitotenv.2020.143601.
115. . Zhang X., Jiao P., Wang Y., Wu P., Li Y., Ma L. Enhancing Methane Production in Anaerobic Co-Digestion of Sewage Sludge and Food Waste by Regulating Organic Loading Rate // Bioresource Technology. 2022; 363:127988. https://doi.org/10.1016/j.biortech.2022.127988.
116. . Carballa M., Regueiro L., Lema J. M. Microbial Management of Anaerobic Digestion: Exploiting the Microbiome-Functionality Nexus // Current Opinion in Biotechnology. 2015; 33:103-111. https://doi.org/10.1016/j.copbio.2015.01.008.
117. . Li M. -T., Rao L., Wang L., Gou M., Sun Z. -Y., Xia Z. -Y., Song W. -F., Tang Y. -Q. Bioaugmentation with Syntrophic Volatile Fatty Acids-Oxidizing Consortia to Alleviate the Ammonia Inhibition in Continuously Anaerobic Digestion of Municipal Sludge // Chemosphere. 2022; 288:132389. https://doi.org/10.1016/j.chemosphere.2021.132389.
118. . Kuroda K., Shinshima F., Tokunaga S., Noguchi T. Q. P., Yamauchi M., Nobu M. K., Narihiro T., Yamada M. Assessing the Effect of Green Tuff as a Novel Natural Inorganic Carrier on Methane-Producing Activity of an Anaerobic Sludge Microbiome // Environmental Technology & Innovation. 2021; 24:101835. https://doi.org/10.1016/j.eti.2021.101835.
119. . Treu L., Tsapekos P., Peprah M., Campanaro S., Giacomini A., Corich V., Kougias P. G., Angelidaki I. Microbial Profiling during Anaerobic Digestion of Cheese Whey in Reactors Operated at Different Conditions // Bioresource Technology. 2019; 275:375-385. https://doi.org/10.1016/j.biortech.2018.12.084.
120. . Contreras-Dávila C. A., Carrión V. J., Vonk V. R., Buisman C. N. J., Strik D. P. B. T. B. Consecutive Lactate Formation and Chain Elongation to Reduce Exogenous Chemicals Input in Repeated-Batch Food Waste Fermentation // Water Research. 2020; 169:115215. https://doi.org/10.1016/j.watres.2019.115215.
121. . Liu B., Kleinsteuber S., Centler F., Harms H., Sträuber H. Competition Between Butyrate Fermenters and Chain-Elongating Bacteria Limits the Efficiency of Medium-Chain Carboxylate Production // Frontiers in Microbiology. 2020; 11. https://doi.org/10.3389/fmicb.2020.00336.
122. . Ordoñez-Frías E. J., Muñoz-Páez K. M., Buitrón G. Biohydrogen Production from Fermented Acidic Cheese Whey Using Lactate: Reactor Performance and Microbial Ecology Analysis // International Journal of Hydrogen Energy. 2024; 52:389-403. https://doi.org/10.1016/j.ijhydene.2023.06.307.
123. . [123] García-Depraect O., Muñoz R., Rodríguez E., Rene E. R., León-Becerril E. Microbial Ecology of a Lactate-Driven Dark Fermentation Process Producing Hydrogen under Carbohydrate-Limiting Conditions // International Journal of Hydrogen Energy. 2021; 46 (20):11284-11296. https://doi.org/10.1016/j.ijhydene.2020.08.209.
124. . Braga Nan L., Trably E., Santa-Catalina G., Bernet N., Delgenes J. -P., Escudie R. Microbial Community Redundance in Biomethanation Systems Lead to Faster Recovery of Methane Production Rates after Starvation // Science of The Total Environment. 2022; 804: 150073. https://doi.org/10.1016/j.scito-tenv.2021.150073.
125. . Yang S., Luo F., Yan J., Zhang T., Xian Z., Huang W., Zhang H., Cao Y., Huang L. Biogas Production of Food Waste with In-Situ Sulfide Control under High Organic Loading in Two-Stage Anaerobic Digestion Process: Strategy and Response of Microbial Community // Bioresource Technology. 2023; 373:128712.https://doi.org/10.1016/j.biortech.2023.128712.
Review
For citations:
Mikheeva E.R., Shekhurdina S.V., Katraeva I.V., Kovalev A.A., Kovalev D.A., Zhuravleva E.A., Laikova A.A., Ivanenko A.A., Panchenko V.A., Litti Yu.V. Optimization of continuous two-stage production of biogitan from wastewater of the confectionery industry. Alternative Energy and Ecology (ISJAEE). 2025;(6):29-62. (In Russ.) https://doi.org/10.15518/isjaee.2025.06.029-062