

Determination of the optimal blade geometry and efficiency evaluation of a gravitational vortex micro hydropower plant with a conical basin
https://doi.org/10.15518/isjaee.2025.06.078-095
Abstract
The growing global demand for energy is stimulating the rapid development of low-head micro hydropower plants. Currently, scientific research aimed at increasing the energy efficiency of gravitational vortex micro hydropower plants is actively being carried out in various regions of the world. Within the framework of this study, the effect of turbine blade geometry on the energy efficiency of three turbine models designed for gravitational vortex micro hydropower systems was analyzed. The geometry of the basin and turbine components was digitally modeled using ANSYS 2022R1 (Fluent Flow) software. The numerical simulations were performed using Computational Fluid Dynamics (CFD) with the SST k-ω turbulence model. According to the CFD analysis results, three turbines with different geometries (a, b, and c) were tested at rotational speeds ranging from 20 to 150 RPM, and the highest efficiency was observed in the c) turbine model. To ensure perpendicular impact of the water flow onto the turbine blades inside the basin, the c) turbine was tilted by 45° relative to the vertical axis, which increased its energy efficiency to 85,5%. To validate the results, 3D physical prototypes of the turbines were fabricated and tested under real conditions. As a result, the c) turbine model inclined at 45°, which showed the highest efficiency in the CFD simulation, also achieved a high efficiency of 79,6% in experimental testing.
Keywords
About the Authors
A. X. UmurzaqovUzbekistan
Umurzaqov Akramjon Xakimovich - Professor-teacher at the Department of Mechanics
Education: Saratov State Technical University, 2012.
Academic degree: Doctor of Technical Sciences.
Area of scientific interests: Renewable energy sources; efficient utilization of water potential energy; design and construction of micro hydropower plants.
Publications: 63
H-index: 1
Scopus Author ID: 58033811700
1601063, Namangan city, str., Islam Karimov, 12
A. B. Mamadjanov
Uzbekistan
Mamadjanov Abdushoxid Baxromjonovich - senior lecturer of the department: «Energy engineering».
Education: Tashkent State Technical University, 2011, engineer.
Academic degree: Doctor of Philosophy in Technical Sciences.
Area of scientific interests: renewable energy sources; electric power systems and networks; hydroenergetics.
Publications: 58
Hirsch index: RSCI – 2; Scopus – 4
Scopus Author ID: 35956444000
1601063, Namangan city, str., Islam Karimov, 12
T. B. Sodiqov
Uzbekistan
Sodiqov Timur Bakhtiyorovich - senior lecturer of the department: «Energy engineering».
Education: Tashkent State Technical University, 2020, engineer.
Academic degree: Doctor of Philosophy in Technical Sciences.
Area of scientific interests: renewable energy sources; electric power systems and networks.
Publications: 22
H-index: 2
Hirsch index: RSCI – 2; Scopus – 4
Scopus Author ID: 57768498900
1601063, Namangan city, str., Islam Karimov, 12
J. X. Akmalov
Uzbekistan
Akmalov Jamshidbek Xakimjon ogli - Doctoral student at the Department of Electronics and Automation, Faculty of Energy
Education: Tashkent State Technical University, 2020, engineer.
Area of scientific interests: renewable energy sources; electric power systems and networks; hydroenergetics.
Publications: 24
H-index: 1
Hirsch index: RSCI: – 1; Scopus: – 1
150107, Fergana region, Fergana city, Fergana street, 86
References
1. . D. W. Kweku, O. Bismark, A. Maxwell, K. A. Desmond, K. B. Danso, E. A. Oti-Mensah, et al. Greenhouse effect: greenhouse gases and their impact on global warming // Journal of scientific research and reports. 2018; 17 (2018):1-9.
2. . A. Mikhaylov, N. Moiseev, K. Aleshin, T. Burkhardt, Global climate change and greenhouse effect // Entrepreneur. Sustain. 2020; 7:2897.
3. . H. Li, B. Xu, A. Riasi, P. Szulc, D. Chen, F. M’zoughi, et al., Performance evaluation in enabling safety for a hydropower generation system. Renew // Energy. 2019; 143:1628-1642.
4. . M. Bilgili, H. Bilirgen, A. Ozbek, F. Ekinci, T. Demirdelen. The role of hydropower installations for sustainable energy development in Turkey and the world. Renew // Energy. 2018; 126:755-764.
5. . Ember. Global Electricity Review 2024. E’lon qilingan: 2025-yil 7-aprel. https://www.reuters.com/sustainability/climate-energy/renewables-provided-record-32-global-electricity-2024-ember-says-2025-04-07.
6. . Ivanovski K., Hailemariam A., Smyth R. The effect of renewable and non-renewable energy consumption on economic growth: Non-parametric evidence // Journal of Cleaner Production. 2021; 286:124956.
7. . Kuriqi A., Pinheiro A. N., Sordo-Ward A., Bejarano M. D., Garrote L. Ecological impacts of run-of-river hydropower plants Current status and future prospects on the brink of energy transition // Renewable and Sustainable Energy Reviews. 2021; 142:110833.
8. . Yildiz V., Vrugt J. A. A toolbox for the optimal tal Modelling & Software. 2019; 111:134-152.
9. . Zheng G., Gu Z., Xu W., Lu B., Li Q., Tan Y., Wang C., Li L. Gravitational surface vortex formation and suppression control: A review from hydrodynamic characteristics // Processes. 2022; 11:42.
10. . Velásquez L., Posada A., Chica E. Surrogate modeling method for multi-objective optimization of the inlet channel and the basin of a gravitational water vortex hydraulic turbine // Applied Energy. 2023; 330:120357.
11. . Velásquez L., Romero-Menco F., Rubio-Clemente A., Posada A., Chica E. Numerical optimization and experimental validation of the runner of a gravitational water vortex hydraulic turbine with a spiral inlet channel and a conical basin. Renew // Energy. 2024; 220:119676.
12. . Betancour J., Romero-Menco F., Velásquez L., Rubio-Clemente A., Chica E. Design and optimization of a runner for a gravitational vortex turbine using the response surface methodology and experimental tests. Renew // Energy. 2023; 210:306-320.
13. . Power C., McNabola A., Coughlan P. A parametric experimental investigation of the operating conditions of gravitational vortex hydropower (GVHP) // Clean Energy Science and Technology. 2016; 4:112-119.
14. . Wichian P., Suntivarakorn R. The effects of turbine baffle plates on the efficiency of water free vortex turbines // Energy Procedia. 2016; 100:198-202. [CrossRef]
15. . Rahman M. M., Hong T. J., Tang R., Sung L., Tamiri F. B. M. Experimental study the effects of water pressure and turbine blade lengths and numbers on the model free vortex power generation system // International Journal of Current Trends in Science and Technology. 2016; 2:13-17.
16. . Kueh T. C, Beh S. L., Ooi Y. S, Rilling D. G. Experimental study to the influences of rotational speed and blade shape on water vortex turbine performance // Journal of Physics: Conference Series. 2017; 822:12066.
17. . Nishi Y, Inagaki T. Performance and flow field of a gravitation vortex type water turbine // Int. J. Rotat. Mach. 2017; 2017:2610508.
18. . Dhakal R., Bajracharya T. R., Shakya S. R., Kumal B., Khanal K., Williamson S. J., Gautam S., Ghale D. P. Computational and experimental investigation of runner for gravitational water vortex power plant. In Proceedings of the 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA 2017), San Diego, CA, USA, 5-8 November 2018; pp. 365-373.
19. . Sritram P., Suntivarakorn R. The efficiency comparison of hydro turbines for micro power plant from free vortex // Energies. 2021; 14:7961.
20. . Bajracharya T. R., Ghimire R. M., Timilsina A. B. Design and performance analysis of water vortex power plant in context of Nepal. In Proceedings of the 20th International Seminar on Hydropower Plants, Vienna, Austria, 14-16 November 2018; pp. 1-20.
21. . Kim M. S., Edirisinghe D. S., Yang H. S., Gunawardane S. D. G. S. P., Lee Y. H. Effects of blade number and draft tube in gravitational water vortex power plant determined using computational fluid dynamics simulations // The International Journal of Advanced Manufacturing Technology. 2021; 45:252-262.
22. . Dhakal S., Nakarmi S., Pun P., Thapa A. B., Bajracharya T. R. Development and testing of runner and conical basin for gravitational water vortex power plant // Journal of the Taiwan Institute of Chemical Engineers. 2014; 10:140-148.
23. . Rahman M. M., Hong T. J., Tamiri F. M. Effects of inlet flow rate and penstock’s geometry on the performance of gravitational water vortex power plant. In: 8th international conference on industrial engineering and operations management, Bandung, Indonesia; 2018. Р. 2968e76. March 6-8.
24. . Hite J. E., Mih W. C. Velocity of air-core vortices at hydraulic intakes // Journal of Hydraulic Engineering. 1994;120(3):284e97.
25. . Ullah R., Cheema T. A., Saleem A. S., Ahmad S. M., Chattha J. A., Park C. W. Performance analysis of multi-stage gravitational water vortex turbine // Energy Conversion and Management. 2019;198.
26. . Ullah R., Cheema T. A., Saleem A. S., Ahmad S. M., Chattha J. A., Park C. W. Preliminary experimental study on multi-stage gravitational water vortex turbine in a conical basin // Journal of Renewable and Sustainable Energy. 2020; 145:2516e29.
27. . Power C., McNabola A., Coughlan P. A parametric experimental investigation of the operating conditions of gravitational vortex hydropower (GVHP) // Journal of Clean Energy Technologies. 2016;4(2):112e9.
28. . Dhakal R., Bajracharya T. R., Shakya S. R., Kumal B., J. Williamson S., Khanal K., Gautam S., Ghale D. P. Computational and experimental investigation of runner for gravitational water vortex power plant. In: 6th international conference on renewable energy research and applications, San Diego, CA, USA; Nov. 5-8, 2017. Р. 365e73.
29. . Nishi Y., Inagaki T. Performance and flow field of a gravitation vortex type water turbine // International Journal of Rotating Machinery. 2017; 2017:1e11.
30. . B. R. Munson and D. F. Young, Fundamentals of Fluid Mechanics, Ames, lowa: John Wiley & Sons, 2006.
31. . Menter F. R. (1994). Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications // AIAA Journal. 1994; 32(8):1598-1605. https://doi.org/10.2514/3.12149
32. . A. B. Mamadjanov, J. X. Akmalov. The effect of conical basin geometry on gravitational water vortex power plant. 5th International conference on energetics civiland agricultural engineering, 13-14 may, 2024. Hybridconference. https://www.e3sconferences.org/articles/e3sconf/pdf/2024/93/e3sconf_iceste2024_01010.pdf.
33. . A. B. Mamadjanov, J. X. Akmalov. The influence of conical basin geometry on the efficiency of a gravity vortex microhydroelectric power plant // Journal of Uzbekhydroenergetics. – № 3, 202, pp. 41-50.
34. . J. X. Akmalov. International scientific and scientific-technical conference on the topic “Study of vortex formation classification in order to increase the energy efficiency of gravity vortex micro hydropower plants”, “Water-energy and food security in the context of global climate change and water scarcity” 25-26 February 2025, pp. 426-430.
Review
For citations:
Umurzaqov A.X., Mamadjanov A.B., Sodiqov T.B., Akmalov J.X. Determination of the optimal blade geometry and efficiency evaluation of a gravitational vortex micro hydropower plant with a conical basin. Alternative Energy and Ecology (ISJAEE). 2025;(6):78-95. https://doi.org/10.15518/isjaee.2025.06.078-095