Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Research and development of nuclear power plants with integrated hydrogen storage systems

https://doi.org/10.15518/isjaee.2025.06.096-116

Abstract

One of the obstacles to the large-scale implementation of NPPs is the low maneuverability of nuclear power units, which can be increased by integrating an energy storage system. A possible solution to this problem is to produce hydrogen using water electrolysis during periods of load failure, and to burn it in a gas turbine unit during peak consumption hours. This paper describes the developed process flow diagram of the NPP with an electrolyzer and a hydrogen gas turbine unit, the methodology and results of modeling. It has been calculated that the efficiency of the developed process solution exceeds the efficiency of the NPP with an electrolyzer and a fuel cell by 1,7%. In addition, it has been found that for the NPP with an electrolyzer and a hydrogen gas turbine unit, marginal profit appears when the ratio of electricity prices during peak and trough periods exceeds 4.

About the Authors

V. O. Kindra
National Research University «Moscow Power Engineering Institute»
Russian Federation

 Kindra Vladimir Olegovich - Candidate of Technical Sciences, Associate Professor.

 Education: Moscow Power Engineering Institute, 2015.

 Area of scientific interests: zero-emission technologies; oxy-fuel combustion; hydrogen energy; nuclear power plants.

 Publications: more than 200

 Hi -index: 12

 Researcher ID: C-6347-2014

 Scopus ID: 57023993700

111250, Moscow, Krasnokazarmennaya str., 14, build. 1



D. S. Kovalev
National Research University «Moscow Power Engineering Institute»
Russian Federation

Kovalev Dmitriy Sergeevich -  post-graduate student, Assistant Professor.
 
 Education: Moscow Power Engineering Institute, 2022.

 Area of scientific interests: nuclear energy; hydrogen technologies; environmental safety; renewable energy; 
mechanical engineering.

 Publications: 10

 Hi-index: 2

 Scopus ID: 57426119300

111250, Moscow, Krasnokazarmennaya str., 14, build. 1



M. V. Oparin
National Research University «Moscow Power Engineering Institute»
Russian Federation

Oparin Maxim Vitalievich - junior research assistant.

 Education: Moscow Power Engineering Institute, 2021.

 Area of scientific interests: zero-emission technologies; digital twins; hydrogen energy; nuclear power plants.

 Publications: more than 30

 Hi -index: 5

 Scopus ID: 36156158100

111250, Moscow, Krasnokazarmennaya str., 14, build. 1



A. N. Rogalev
National Research University «Moscow Power Engineering Institute»
Russian Federation

Rogalev Andrey Nikolaevich - Doctor of Technical Sciences, Associate Professor, Head of Department of Innovative Technologies for High-Tech Industries.
 
 Education: Moscow Power Engineering Institute, 2009.

 Area of scientific interests: hydrogen combustion; thermal and nuclear power plants; zero-emission technologies; energy management.

 Publications: more than 200

 Hi -index: 12
 
 Researcher ID: M-8013-2016
 
 Scopus ID: 34980078500

 111250, Moscow, Krasnokazarmennaya str., 14, build. 1



N. D. Rogalev
National Research University «Moscow Power Engineering Institute»
Russian Federation

 Rogalev Nikolay Dmitrievich - Doctor of  Engineering Sciences, Professor, Rector, Head of the Department 
of Thermal Power Plants (TPP) 

Education: MPEI, 1985.

 Area of scientific interests: scientific, technological and economic problems of the fuel and energy complex, including renewable energy sources, digitalization of energy and hydrogen energy; technology transfer and 
commercialization, innovation development, problems of engineering education.

 Publications: более 250

 Hi-index: 10
 
 Researcher ID: AAE-7314-2022
 
 Scopus ID: 6507029432

111250, Moscow, Krasnokazarmennaya str., 14, build. 1



References

1. . Akaev A. A. The impact of hydrocarbon energy resources on the dynamics of global economic development in the 21st century // Economic Science of Modern Russia. – 2014. – No. 2 (65). – Pp. 34-46.

2. . McNeill J. R. Something New Under the Sun: An Environmental History of the Twentieth-Century World (The Global Century Series). W.W. Norton & Company. – 2001. – 452 p.

3. . Cooper R. N., Houghton J. T., McCarthy J. J., Metz B. Climate Change 2001: The Scientific Basis // Foreign Affairs. – 2002. – № 1. – V. 81. – P. 208.

4. . «Novatek» and «Severstal» will launch a joint hydrogen project by 2023. / Vedomosti. 2021. [Electronic resource]. URL: https://www.vedomosti.ru/business/articles/2021/06/03/872835-novatek-severstal (Accessed: 06.07.2023).

5. . «Gazprom» plans to participate in the implementation of pilot hydrogen energy projects in Russia [Electronic resource]. URL: https://www.gazprom.ru/press/news/2021/november/article543362/ (Accessed:

6. . Qazi U. Y. Future of hydrogen as an alternative for next-generation industrial applications; challenges and expected opportunities // Energies. – 2022. – № 13. – V. 15. – P. 4741.

7. . Incer-Valverde J., Korayem A., Tsatsaronis G., Morosuk T. «Colors» of hydrogen: Definitions and carbon intensity // Energy conversion and management. – 2023. – V. 291. – P. 117294.

8. . Roy R., Antonini G., Hayibo K. S., Rahman M. M., Khan S., Tian W., Pearce J. M. Comparative techno-environmental analysis of grey, blue, green/yellow and pale-blue hydrogen production // International Journal of Hydrogen Energy. – 2025. – V. 116. – Pp. 200-210.

9. . Sebbahi S., Nabil, N., Alaoui-Belghiti A., Laasri S., Rachidi S., Hajjaji A. Assessment of the three most developed water electrolysis technologies: alkaline water electrolysis, proton exchange membrane and solid-oxide electrolysis // Materials today: proceedings. – 2022. – V. 66. – Pp. 140-145.

10. . Balthasar W. Hydrogen production and techno ogy: today, tomorrow and beyond // International Journal of Hydrogen Energy. – 1984. – № 8. – V. 9. – Pp. 649-668.

11. . Holladay J. D., Hu J., King D. L., Wang Y. An overview of hydrogen production technologies // Catalysis Today. – 2009. – № 4. – V. 139. – Pp. 244-260.

12. . Ji M., Wang J. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators // International Journal of Hydrogen Energy. – 2021. – № 78. – V. 46. – Pp. 38612-38635.

13. . Wang L., Chen M., Küngas R., Lin T. E., Diethelm S., Maréchal F. Power-to-fuels via solid-oxide electrolyzer: Operating window and techno-economics // Renewable and Sustainable Energy Reviews. – 2019. – V. 110. – Pp. 174-187.

14. . Cinti G., Discepoli G., Bidini G., Lanzini A., Santarelli M. Co⁰electrolysis of water and CO2 in a solid oxide electrolyzer (SOE) stack // International Journal of Energy Research. – 2016. – №. 2. – V. 40. – Pp. 207-215.

15. . Kindra V. O., Maksimov I. A., Komarov I. I., Osipov S. K., Zlyvko O. V. Small power nuclear plants: technical level and prospects for commercialization // Thermal Engineering. – 2024. – №. 4. – V. 71. – Pp. 287-300.

16. . Kindra V. O., Rogalev A. N., Kovalev D. S., Ilin I. V., Levina A. I. Research and development of high temperature gas-cooled reactor nuclear power plants for combined production of electricity, heat and hydrogen // International Journal of Hydrogen Energy. – 2025; 148:149968

17. . Aminov R., Egorov A. Increasing capacity of a nuclear power plant unit using the hydrogen-fueled feedwater heating system // International Journal of Energy Research. – 2020. – №. 7. – V. 44. – Pp. 5609-5620.

18. . Brown L. C., Besenbruch G. E., Lentsch R. D., Schultz K. R., Funk J. F., Pickard P. S., Showalter S. K. High efficiency generation of hydrogen fuels using nuclear power. General Atomics, San Diego, CA (United States). – 2003.

19. . Naterer G. F., Dincer I., Zamfirescu C. Hydrogen production from nuclear energy. – London: Springer, 2013. – P. 492.

20. . Kindra V., Maksimov I., Oparin M., Zlyvko O., Rogalev A. Hydrogen technologies: a critical review and feasibility study // Energies. – 2023. – №. 14. – V. 16. – P. 5482.

21. . Aminov R. Z., Egorov A. N., Bairamov A. N. Assessing the Effectiveness of NPP Participation in Covering Peak Electrical Loads Based on Hydrogen Technology // Thermal Engineering. – 2024. – №. 2.– V. 71. – Pp. 125-141.

22. . Kopasz J. et al. 2020 Hydrogen and Fuel Cell Technologies Market Report. – Argonne National Lab. (ANL), Argonne, IL (United States), 2022. – №. ANL-22/04.

23. . Nose M., Kawakami T., Araki H., Senba N., Tanimura S. Hydrogen-fired Gas Turbine Targeting Realization of CO2-free Society. – 2018. – № 4. – V. 55.

24. . Aziz M., Wijayanta A. T., Nandiyanto A. B. D. Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization: 12 // Energies. Multidisciplinary Digital Publishing Institute. – 2020. – № 12. – V. 13. – P. 3062.

25. . Inoue K., Miyamoto K., Domen S., Tamura I., Kawakami T., Tanimura S. Development of hydrogen and natural gas co-firing gas turbine // Mitsubishi Heavy Industries Technical Review. 2018; 55(2):1.

26. . Kostarev V. S., Shirmanov I. A., Litvinov D. N., Shcheklein S. E. On the determination of optimal thermodynamic parameters of the VVER-1200 reactor using computer modeling // Physics. Technologies. Innovations (PTI-2021). – Yekaterinburg, UrFU. – 2021. – Pp. 484-492.

27. . Aspen Technology, Inc. Aspen Plus. [Available online] URL: https://www.aspentech.com/en/products/engineering/aspen-plus (Accessed on 19 July 2021).

28. . Lemmon E. W., Bell I. H., Huber M. L., McLinden M. O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP; Version 10.0, National Institute of Standards and Technology; Standard Reference Data Program: Gaithersburg, MA, USA, 2018.

29. . Karkhov A. N. Problems of assessing investment projects of nuclear power plants // Economic dynamics and innovative development. Moscow: Publishing house of INP. – 2007.

30. . Purnami P., Nugroho W. S., Hakim L., Gede Wardana I. N. Development of a magnetic rotator to enhance the hydrogen evolution reaction in a proton exchange membrane water electrolysis cell // Eastern-European Journal of Enterprise Technologies. – 2024. – №. 1. – V. 131.


Review

For citations:


Kindra V.O., Kovalev D.S., Oparin M.V., Rogalev A.N., Rogalev N.D. Research and development of nuclear power plants with integrated hydrogen storage systems. Alternative Energy and Ecology (ISJAEE). 2025;(6):96-116. (In Russ.) https://doi.org/10.15518/isjaee.2025.06.096-116

Views: 4


ISSN 1608-8298 (Print)