Bioconversion of lignocellulosic biomass to hydrogen under acidogenic conditions: process optimization study
https://doi.org/10.15518/isjaee.2025.07.028-045
Abstract
Hydrogen as an energy carrier represents an intermediate link in the transformation of waste into energy sources. The study demonstrates optimization possibilities for hydrogen production from lignin, wheat straw, and softwood sawdust under acidogenic conditions at 20 °C and 35 °C using a hybrid approach combining physicochemical and microbiological processes. The acidogenic activity of biocatalyst was increased by at least 40% through its cultivation at pH 5,5 for 35 days. Eliminating delignification and implementing combined oxidative depolymerization of waste coupled with acid hydrolysis and thermolysis enabled efficient conversion of organic matter into soluble form, with 22-36% being reducing sugars. The fastest accumulation of biogas and hydrogen occurred at 35 °C during the biotransformation of pretreated wheat straw. For hydrogen production from pine sawdust and lignin, replacement of at least 25% of the substrate COD with glycerol is recommended. Under optimal conditions in continuous UASB reactor operation, biogas production reached 0.75 L/L-reactor/day with a hydrogen content of 50-67%.
About the Authors
S. N. GaydamakaRussian Federation
Gaydamaka Sergey Nikolaevich, Researcher of the Department of Chemical Enzymology, Candidate of Chemical Sciences,
119991, Moscow, Leninskie Gory, 1/3.
Researcher ID: ABB-4102-2020;
Scopus Author ID: 8968522300
M. A. Gladchenko
Russian Federation
Gladchenko Marina Anatolyevna, Senior Researcher of the Department of Chemical Enzymology, Candidate of Technical Sciences,
119991, Moscow, Leninskie Gory, 1/3.
Researcher ID: K-2316-2015;
Scopus Author ID: 6603312528.
O. V. Senko
Russian Federation
Senko Olga Vitalievna, Senior Researcher of the Department of Chemical Enzymology,
Candidate of Chemical Sciences,
119991, Moscow, Leninskie Gory, 1/3.
Researcher ID: E-8312-2014;
Scopus Author ID: 24449804500.
O. V. Maslova
Russian Federation
Maslova Olga Vasilyevna, Senior Researcher of the Department of Chemical Enzymology,
Candidate of Chemical Sciences,
119991, Moscow, Leninskie Gory, 1/3.
Researcher ID: E-8340-2014;
Scopus Author ID: 7004468511.
A. A. Kornilova
Russian Federation
Kornilova Albina Alexandrovna, Senior Researcher of the Department of Solid State Physics, Candidate of Physical and Mathematical Sciences,
119991, Moscow, Leninskie Gory, 1/2.
Scopus Author ID: 7004498796.
References
1. . Dincer I., Aydin M. I. New paradigms in sustainable energy systems with hydrogen // Energy Conversi Manage. 2023; 283:116950. https://doi.org/10.1016/j.enconman.2023.116950.
2. . Bhattacharya S., Banerjee R., Ramadesigan V., Liebman A., Dargaville R. Bending the emission curve – The role of renewables and nuclear power in achieving a net-zero power system in India // Renew Sustain Energy Rev. 2024; 189:113954. https://doi.org/10.1016/j.rser.2023.113954.
3. . Mendrela P., Stanek W., Simla T. Sustainability assessment of hydrogen production based on nuclear energy // International Journal of Hydrogen Energy. 2024; 49:729-744. https://doi.org/10.1016/j.ijhydene.2023.07.156.
4. . Raut S. S., Mishra A. Lignocellulosic biomass-driven biohydrogen production: Innovations, challenges, and future prospects for a sustainable green hydrogen economy // International Journal of Hydrogen Energy. 2025; 132:51-74. https://doi.org/10.1016/j.ijhydene.2025.04.268.
5. . Mojaver P., Khalilarya S. Sustainable waste-to-hydrogen energy conversion through face mask waste gasification integrated with steam methane reformer and water-gas shift reactor // International Journal of Hydrogen Energy. 2024; 85:947-961. https://doi.org/10.1016/j.ijhydene.2024.08.369.
6. . Baykara S. Z. Hydrogen: A brief overview on its sources, production and environmental impact // International Journal of Hydrogen Energy. 2018; 43:1060510614. https://doi.org/10.1016/j.ijhydene.2018.02.022.
7. . Arsad A. Z., Hannan M. A., Al-Shetwi A. Q., Mansur M., Muttaqi K. M., Dong Z. Y., Blaabjerg F. Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions // International Journal of Hydrogen Energy. 2022; 47:17285-17312. https://doi.org/10.1016/j.ijhydene.2022.03.208.
8. . Le T. T., Sharma P., Bora B. J., Tran V. D., Truong T. H., Le H. C., Nguyen P. Q. P. Fueling the future: A comprehensive review of hydrogen energy systems and their challenges // International Journal of Hydrogen Energy. 2024; 54:791-816. https://doi.org/10.1016/j.ijhydene.2023.08.044.
9. . Gladchenko M. A., Gaydamaka S. N., Kornilov V. I., Chernov V. V., Kornilova A. A. Anaerobic conversion of waste of alcohol production with animal and poultry waste into methane as a substrate for hydrogen production // International Journal of Hydrogen Energy. 2024; 51(D):37-48. https://doi.org/10.1016/j.ijhydene.2023.06.311.
10. . García-Depraect O., Martínez-Mendoza L. J., Diaz I., Muñoz R. Two-stage anaerobic digestion of food waste: Enhanced bioenergy production rate by steering lactate-type fermentation during hydrolysis-acidogenesis // Bioresource Technology. 2022; 358:127358. https://doi.org/10.1016/j.biortech.2022.127358.
11. . Galvagno A., Chiodo V., Urbani F., Freni F. Biogas as hydrogen source for fuel cell applications // International Journal of Hydrogen Energy. 2013; 38:39133920. https://doi.org/10.1016/j.ijhydene.2013.01.083.
12. . Senko O., Gladchenko M., Maslova O., Efremenko E. Long-term storage and use of artificially immobilized anaerobic sludge as a powerful biocatalyst for conversion of various wastes including those containing xenobiotics to biogas // Catalysts 2019; 9(4):326. https://doi.org/10.3390/catal9040326.
13. . Senko O., Maslova O., Gladchenko M., Gaydamaka S., Efremenko E. Biogas production from biomass of microalgae Chlorella vulgaris in the presence of benzothiophene sulfone. IOP Conf Ser: Mater Sci Eng. 2019; 525:012089. https://doi.org/10.1088/1757899X/525/1/012089.
14. . Maslova O., Senko O., Stepanov N., Gladchenko M., Gaydamaka S., Akopyan A., Polikarpova P., Lysenko S., Anisimov A., Efremenko E. Formation and use of anaerobic consortia for the biotransformation of sulfur-containing extracts from pre-oxidized crude oil and oil fractions // Bioresource Technology. 2021; 319:124248 https://doi.org/10.1016/j.biortech.2020.1242480.
15. . Gaydamaka S., Gladchenko M., Kornilov I., Ryazanov M., Gerasimov M., Kornilova A. Nitrocellulose-containing sediment as renewable resource for hydrogen and high-pure carbon production // International Journal of Hydrogen Energy. 2024; 51(D):62-78. https://doi.org/10.1016/j.ijhydene.2023.08.207.
16. . Deivayanai V. C., Yaashikaa P. R., Kumar P. S., Rangasamy G. A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: Pretreatment strategy, technology advances and perspectives // Bioresource Technology. 2022; 365:128166. https://doi.org/10.1016/j.biortech.2022.128166.
17. . Atelge M. R., Atabani A. E., Banu J. R., Krisa D., Kaya M., Eskicioglu C., Kumar G., Lee C., Yildiz Y. Ş., Unalan S., Mohanasundaram R., Duman F. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery // Fuel. 2020; 270:117494. https://doi.org/10.1016/j.fuel.2020.117494.
18. . Alvarez-Guzman C. L., Rodriguez-Hipolito F., Chavez-Reyes Y., Valdez-Vazquez I. Lignocellulosic biomass mixtures improve hydrogen production by promoting microbial complementation in a consolidated bioprocess // Journal of Cleaner Production. 2025; 489:144691. https://doi.org/10.1016/j.jclepro.2025.144691.
19. . Nagarajan S., Jones R. J., Oram L., Massanet-Nicolau J., Guwy A. Intensification of acidogenic fermentation for the production of biohydrogen and volatile fatty acids – a perspective // Fermentation. 2022; 8:325. https://doi.org/10.3390/fermentation8070325.
20. . Li W., Xu Y., Wang G., Xu T., Wang K., Zhai S., Si C. Sustainable Carbon-Based Catalyst Materials Derived from Lignocellulosic Biomass for Energy Storage and Conversion: Atomic Modulation and Properties Improvement // Carbon Energy. 2025; 7:e708. https://doi.org/10.1002/cey2.708.
21. . Гладченко М. А., Гайдамака С. Н., Мурыгина В. П., Варфоломеев С. Д. Анаэробная конверсия лигноцеллюлозы в материалы для получения биотоплива – летучие жирные кислоты и этанол // Биотехнология. 2018; 34:42-52. https://doi.org/10.21519/0234-2758-2018-34-3-42-52
22. . Stepanov N., Senko O., Aslanli A., Maslova O., Efremenko E. Enhanced Biogas Production from Glucose and Glycerol by Artificial Consortia of Anaerobic Sludge with Immobilized Yeast // Fermentation. 2025; 11:352. https://doi.org/10.3390/fermentation11060352.
23. . Tomatis M., Jeswani H. K., Azapagic A. Environmental impacts of valorisation of crude glycerol from biodiesel production – A life cycle perspective // Waste Management. 2024; 179:55-65. https://doi.org/10.1016/j.wasman.2024.03.005.
24. . Гладченко М. А., Гайдамака С. Н., Мурыгина В. П., Варфоломеев С. Д. Оптимизация конверсии отходов аграрно-промышленного комплекса в летучие жирные кислоты в анаэробных условиях // Вестник Московского университета. Серия 2. Химия. 2014; 55:241-248. https://doi.org/10.3103/S0027131414040026.
25. . Варфоломеев С. Д., Ломакин С. М., Горшенев В. Н. Антиперен, способ его получения, способ огнезащитной обработки материалов и способ тушения очага горения. 2011 Патент РФ 2425069.
26. . Скибида И. П., Асеева Р. М., Сахаров П. А., Сахаров А. М. Интумесцентный коксообразующий антипирен, способ его получения, способ огнезащитной обработки горючего субстрата и способ тушения очага горения. 2003 Патент РФ 2204547 C1.
27. . Gaydamaka S. N., Gladchenko M. A., Kornilov I. V., Ryazanov M. N., Gerasimov M. A., Kornilova A. A. Anaerobic decomposition of substandard pet food as a raw material source for producing hydrogen from methane // International Journal of Hydrogen Energy. 2024; 96:803810. https://doi.org/10.1016/j.ijhydene.2024.11.306.
28. . Senko O., Maslova O., Gladchenko M., Gaydamaka S., Akopyan A., Lysenko S., Karakhanov E., Efremenko E. Prospective approach to the anaerobic bioconversion of benzo- and dibenzothiophene sulfones to sulfide // Molecules. 2019; 24:1736. https://doi.org/10.3390/molecules24091736.
29. . Kalyuzhnyi S., Gladchenko M., Starostina E., Shcherbakov S., Versprille B. Integrated biological (anaerobic–aerobic) and physico-chemical treatment of baker’s yeast wastewater // Water Science and Technology 2005; 52:273-280.
30. . Кузнецов Б. Н. Каталитическая химия растительной биомассы // Саровский образовательный журнал. Химия. 1996; 12:47.
31. . Gladchenko M. A., Kovalev D. A., Kovalev A. A., Litty Yu. V., Nozhevnikova A. N. Methane production by anaerobic digestion of organic waste from vegetable processing facilities // Applied Biochemistry and Microbiology. 2017; 53:242-9. https://doi.org/10.7868/S055510991702009X.
32. . Sołowski G., Konkol I., Shalaby M., Cenian A. Methane and hydrogen production from potato wastes and wheat straw under dark fermentation // Chemical Engineering and Processing: Process Intensification. 2021; 42:3-13. https://doi.org/10.24425/cpe.2021.137335
33. . Cudjoe D., Zhu B., Wang H. Towards the realization of sustainable development goals: Benefits of hydrogen from biogas using food waste in China // Journal of Cleaner Production. 2022; 360:132161. https://doi.org/10.1016/j.jclepro.2022.132161.
34. . Kumaravel S., Thiruvengetam P., Karthick K., Sankar S. S., Karmakar A., Kundu S. Green and sustainable route for oxidative depolymerization of lignin: New platform for fine chemicals and fuels // Biotechnology Programm. 2021; 37:e3111. https://doi.org/10.1002/btpr.3111.
35. . Ma C., Zhang J., Yin Y., Suo C., Liu S. Free radical theory in lignin oxidation depolymerization // Trends in Chemistry. 2024; 6:234-247. doi: 10.1016/j.trechm.2024.03.006.
36. . Cao G. L., Xia X. F., Zhao L., Wang Z. Y., Li X., Yang Q. Development of AFEX-based consolidated bioprocessing on wheat straw for biohydrogen production using anaerobic microflora // International Journal of Hydrogen Energy. 2013; 38:15653-15659. https://doi.org/10.1016/j.ijhydene.2013.04.068.
37. . Alvarado-Flores J. J., Alcaraz-Vera J. V., Ávalos-Rodríguez M. L., Guzmán-Mejía E., Rutiaga-Quiñones J. G., Pintor-Ibarra L. F., Guevara-Martínez S. J. Thermochemical production of hydrogen from biomass: pyrolysis and gasification // Energies. 2024; 17:537. https://doi.org/10.3390/en17020537.
38. . Xie X., Song K., Wang J., Hu J., Wu S., Chu Q. Efficient ethanol production from masson pine sawdust by various organosolv pretreatment and modified pre-hydrolysis simultaneous saccharification and fermentation // Renewable energy. 2024; 225:120289. https://doi.org/10.1016/j.renene.2024.120289.
Review
For citations:
Gaydamaka S.N., Gladchenko M.A., Senko O.V., Maslova O.V., Kornilova A.A. Bioconversion of lignocellulosic biomass to hydrogen under acidogenic conditions: process optimization study. Alternative Energy and Ecology (ISJAEE). 2025;(7):28-45. (In Russ.) https://doi.org/10.15518/isjaee.2025.07.028-045































