Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Review of research in the field of hydrogen production using renewable and low-potential energy sources

https://doi.org/10.15518/isjaee.2025.07.063-082

Abstract

The process of producing hydrogen through the use of thermal energy has been studied economically, technologically and practically. Hydrogen is produced using natural gas by steam conversion of methane.

The methane is captured and enters the hydrogen cooking process. This process is performed by thermolysis of methane in a solar reactor at high temperatures. In this process, solar energy is a source of heat. Water is electrolyzed at a temperature of 700 to 1000 ° C in order to extract hydrogen from the water. Next, the methane is completely decomposed by cracking.

The methods of the hydrogen production process are compared. The application of this chemical element in industry as an energy carrier is described. The effectiveness of the industrial application of hydrogen using solar energy has been proven.

The aim of the study is to extract hydrogen using ion exchange membrane technology using a solar electrolyzer.

The scientific work was carried out using two methods: direct connection of the photovoltaic system to a hydrogen analyzer and indirect analysis of hydrogen using solar electrolysis. The solar electrolysis system includes arrays with solar cells and an automatic MRRT controller for maximum power search. A DC DC converter is used for stable roundthe-clock operation of the controller at maximum power. This converter supplies the analyzer with the required current. Solar-hydrogen power systems that use solar electrolysis contain water tanks. During the daytime, electrical energy is generated, which is further consumed by splitting water into oxygen and hydrogen. At night, the hydrogen stored in the tanks is used to generate electrical energy.

The method of direct connection to the analyzer is less effective than indirect analysis. The disadvantage of direct connection is the instability of sunlight during the day. The effectiveness of indirect analysis is expressed in the addition of potassium hydroxide. This increases the ionization of the electrolyte and, consequently, improves the flow of hydrogen.

About the Authors

Zaid Salah
South Ural State University; Ministry of Energy of Iraq
Russian Federation

454080, Chelyabinsk, Lenin Str., 76.



O. Yu. Kornyakova
South Ural State University
Russian Federation

Kornyakova Olga Yurievna,

454080, Chelyabinsk, Lenin Str., 76.



K. V. Osintsev
South Ural State University
Russian Federation

Osintsev Konstantin Vladimirovich, Doctor of Technical Sciences,

454080, Chelyabinsk, Lenin Str., 76.



V. K. Zamaraeva
Federal State Unitary Enterprise «Russian Federal Nuclear Center-Zababakhin All-Russia Research Institute of Technical Physics»
Russian Federation

Zamaraeva (Petropavlovskaya) Victoria Konstantinovna,

Chelyabinsk.



S. A. Zamaraev
Federal State Unitary Enterprise «Russian Federal Nuclear Center-Zababakhin All-Russia Research Institute of Technical Physics»
Russian Federation

Zamaraev Sergey Alexandrovich, 

Chelyabinsk.



References

1. . Yu. N. Linnik, E. D. Falyakhova. Hydrogen Energy and Prospects for Its Development // University Bulletin. – 2023. – No. 4. – Pp. 33-37. DOI: 10.26425/1816-4277-2023-4-33-39

2. . A. B. Yaroslavtsev. Development of electrochemical technologies for hydrogen energy / 11th All-Russian Conference «Fuel Cells and Power Plants Based on Them». – 2024. – No. 11. – Pp. 35-38. DOI: 10.24412/cl-37211-FC-2024.12

3. . V. I. Borzenko. Hydrogen Energy: Status and Prospects // Environment and Energy Science. – 2020. – No. 3. – Pp. 13-21. DOI: 10.5281/zenodo.4139240

4. . L. V. Nefedova. Assessment of the Role of Solar Energy Development as a Tool for the Energy Transition in Russia // Bulletin of the Peoples’ Friendship University of Russia. Series: Ecology and Life Safety. – 2023. – No. 2(31). – Pp. 278-290. DOI: 10.22363/2313-2310-2023-31-2-278-290

5. . A. Novak. Hydrogen: Energy of a «Clean» Future // Energeticheskaya Politika. – 2021. – No. 4(158). – Pp. 6-11. DOI: 10.46920/2409-5516_2021_4158_6

6. . G. Gurbanova, Sh. Gapurdzhanova, Y. Ashirov, Kh. Ashirov. Hydrogen Energy: Potential and Infrastructure // Symbol of Science. – 2024. – No. 10-1-1. – Pp. 47-49.

7. . V. B. Belov. Implementation of Germany’s National Hydrogen Strategy: Key Results of 2022. Part 1 // Scientific and Analytical Bulletin of the Institute of Europe of the Russian Academy of Sciences. – 2023. – No. 1. – Pp. 124-133. DOI: 10.15211/vestnikieran12023123134

8. . N. A. Mezaal, A. A. Kalyutik, K. A. Ali, and B. H. Rasol. Steam conversion of methane and methane pyrolysis with CO2 disposal and capture at an energy facility // International Research Journal. – 2024. – No. 2(140). – Pp. 1-10.

9. . Sh. Baichieva, U. Dzhumaev, A. Ashirov. Prospects and Disadvantages of Hydrogen Energy // IN SITU. – 2023. – No. 1. – Pp. 105-107.

10. . Yu. V. Lebedeva. The Nuclear Energy Agency of the Organization for Economic Cooperation and Development: Legal Status, Research Projects, and International Cooperation // Vestnik of Saint Petersburg University. Law. – 2024. – No. 3(15). – Pp. 847-865.

11. . V. A. Sednin, R. S. Ignatovich. Analysis of the Efficiency of Hydrogen Production Technology at a MiniTPP Using Local Fuels by the Thermochemical Method // Energetika. Izvestiya Vysshikh Uchebnykh Zavedeniy i Energeticheskikh Ob’edineniy SNG. – 2023. – No. 4(66). – Pp. 354-372. DOI: 10.21122/1029-7448-2023-66-4-354-373

12. . D. A. Yudin. Analysis of the Development of Hydrogen Energy in the World // Innovations and Investments. – 2022. – No. 6. – Pp. 34-38. DOI: 10.21686/2411-118X-2022-2-50-58

13. . Yu. E. Nikolaev, M. A. Aydarov. Evaluation of the Efficiency of Energy Complexes with Production of Hydrogen, Oxygen, Heat, and Electricity // Izvestiya Vysshikh Uchebnykh Zavedeniy. Problemy Energetiki. – 2024. – No. 2(26). – Pp. 114-126. DOI: 10.30724/1998-9903-2024-26-2-114-127

14. . K. S. Nuralieva. Risk Mitigation Strategies for the Implementation of Clean Hydrogen in Various Sectors: A Qualitative Analysis // Central Asian Journal of Academic Research. – 2025. – No. 1(3). – Pp. 175-180.

15. . E. Zotova. Global Decarbonization: Towards Hydrogen // Energeticheskaya Politika. – 2023. – No. 10(189). – Pp. 80-89.

16. . A. L. Maksimov, A. G. Ishkov, A. A. Pimenov, K. V. Romanov, A. M. Mikhailov, E. A. Koloshkin. Physical and chemical aspects and the carbon footprint of hydrogen production from water and hydrocarbons // Notes of the Mining Institute. – 2024. – No. 272. – Pp. 87-93.

17. . V. V. Bobrova, N. K. Borisyuk, and L. V. Kirkhmeer. Hydrogen Economy: Opportunities and Prospects // Vestnik Samarskogo universiteta. Ekonomika i upravlenie. – 2022. – No. 1(13). – Pp. 7-16. DOI: 10.18287/2542-0461-2022-13-1-7-16

18. . T. V. Yavorova, Yu. A. Kamcharova. How to Turn Green Hydrogen into an Economically Viable Energy Source // Moscow Economic Journal. – 2021. – No. 12. – Pp. 344-358. DOI: 10.24412/2413-046X-2021-10744

19. . A. A. Fedorovskaya, O. D. Gladysheva. Simulation model for assessing the impact of renewable energy facilities on the environmental state of a Russian Federation subject // Modern Trends in Construction, Urban Planning, and Territorial Planning. – 2024. – No. 3(3). – Pp. 49-60. DOI: 10.23947/2949-1835-2024-3-3-49-60

20. . I. A. Kapitonov. Outlines of the Perspective Transition to a New Energy System Using Hydrogen as an Energy Carrier in Russia and Abroad // Innovations and Investments. – 2023. – No. 10. – Pp. 82-84.

21. . B. A. Bulygin, I. K. Novikov, and I. V. Shostak. Electro-chemical-thermochemical complementary system for producing hydrogen for efficient storage of full-spectrum solar energy // Bulletin of Science. – 2024. – No. 6(75)-3. – Pp. 2310-2134.

22. . Yu. O. Matselya and E. A. Zhirnova. Prospects for the Use of Nuclear Energy // Actual Problems of Aviation and Cosmonautics. – 2021. – No. 2. – Pp. 896-898.

23. . A. N. Mrakin, O. V. Afanasyeva, I. D. Karpilov, and E. S. Severgina. Exergetic Analysis of a Thermochemical Heat Regeneration System Based on Steam Conversion of Methane // Izvestiya Vysshikh Uchebnykh Zavedeniy. Chemistry and Chemical Technology. 2023. – No. 12 (66). – Pp. 124-130. DOI: 10.6060/ivkkt.20236612.6950

24. . S. V. Razmanova. Prospects for the Development of Hydrogen Energy in the Russian Federation // Georesursy. – 2023. – No. 3(25). – Pp. 216-226. DOI: 10.18599/grs.2023.3.25

25. . E. A. Rakhmatov, A. Yu. Dustov, Kh. A. Togaev, and B. A. Adilova. Technology of Hydrogen Production from Natural Gas // Eastern Renaissance: Innovative, Educational, Natural, and Social Sciences. – 2025. – No. 5(1). – Pp. 287-291.

26. . E. B. Malykh. The Development of Renewable Energy in the World in the Context of Russia’s Geoeconomic Interests // Economics and Management. – 2022. – No. 28(3). – Pp. 255-266. DOI: 10.35854/1998-1627-2022-3-255-266

27. . A. N. Korobkov, S. I. Turliy. Hydrogen Economy // Skif. Issues of Student Science. – 2022. – No. 11(75). – Pp. 51-54.

28. . I. A. Chuvychkina. Transformation of Russian-European Relations in the Energy Sector in the Context of Sanctions Policy // Economic and Social Problems of Russia. – 2023. – No. 2. – Pp. 31-45. DOI: 10.31249/espr/2023.02.02.

29. . V. Klimenko, A. Tereshin, K. Kolikov, and I. Bernadiner. Russia’s Prospects for Reducing Methane Emissions and Joining the Global Methane Agreement // Energy Policy. – 2023. – No. 11(190). – Pp. 56-73. DOI: 10.46920/2409-5516_2023_11190_56

30. . R. Kh. Rakhimov, V. P. Ermakov. Prospects of solar energy: the role of modern heliotechnologies in hydrogen production // Computational nanotechnology. – 2023. – No. 3(10). – Pp. 11-23. DOI: 10.33693/2313-223X-2023-10-3-11-25

31. . M. U. Nosirov, Yu. B. Sobirov, Sh. R. Nurmatov, and Kh. Yu. Rakhimov. Methods of producing green hydrogen using solar energy // Bulletin of Young Scientists. – 2024. – No. 4. – Pp. 19-23.

32. . O. F. Temirov. Common methods of producing hydrogen // Economics and Society. – 2025. – No. 4 (131)-1. – Pp. 1174-1177.

33. . A. B. Yaroslavtsev. Development of electrochemical technologies for hydrogen energy // 11th All-Russian Conference “Fuel Cells and Power Plants Based on Them”. – 2024. – No. 11. – Pp. 35-37. DOI: 10.24412/cl-37211-FC-2024.12

34. . A. S. Romanov. Hydrogen Energy: A Comparative Analysis of Hydrogen Production Methods // Scientific Notes of Young Researchers. – 2023. – No. 3. – Pp. 73-80.

35. . I. G. Donskoy. Influence of water vapor and carbon dioxide additives on the characteristics of the oxygen gasification process of pulverized coal fuel // Bulletin of the South Ural State University. Series: Power Engineering. – 2021. – No. 1. – Pp. 21-28. DOI: 10.14529/power210102

36. . A. V. Savostyanov, O. A. Kravchenko. Hydrogen Energy and Technologies. Ammonia as an accumulator and a means of hydrogen delivery (review) // Izvestiya of Higher Educational Institutions. North Caucasus Region. Technical Sciences. – 2021. – No. 1. – Pp. 50-55.

37. . V. A. Bunev, A. P. Senachin. Numerical Modeling of Hydrogen Oxidation at High Pressures Using Global Kinetics // Izvestiya of Altai State University. – 2022. – No. 1(123). – Pp. 83-88. DOI: 10.14258/izvasu(2022)1-13

38. . D. V. Andreev. Oxidative Steam Conversion of Methanol in a Microchannel Reactor // Polzunovsky Vestnik. – 2021. – No. 4. – Pp. 123-128. DOI: 10.25712/ASTU.2072-8921.2021.04.021

39. . V. Ya. Afanasyev, V. M. Kraev, and A. I. Tikhonov. Analysis of sources of production of perspective hydrocarbon fuel // Coal. – 2024. – No. 7(1195). – Pp. 37-42. DOI: 10.18796/0041-5790-2024-1-37-42

40. . B. Kulyev, A. Akieva, A. Yabadullayeva, S. Annabayev. Production, storage and use of hydrogen in power engineering // Symbol of science. – 2024. – No. 11(1)-1. – Pp. 74-46.

41. . I. S. Chemakina, N. A. Devleshova, and E. V. Andrusenko. Production of an Alternative Fuel at Oil and Gas Condensate Deposits: Hydrogen // Bulletin of the Far Eastern Branch of the Russian Academy of Sciences. – 2023. – No. 1. – Pp. 112-121. DOI: 10.37102/0869-7698_2023_227_01_9

42. . S. V. Belyaev, M. S. Levina. Problems and Prospects of Hydrogen Production and Application // Resources and Technologies. – 2023. – No. 20(2). – Pp. 36-54. DOI: 10.15393/j2.art.2023.6843

43. . I. N. Khasilov, R. A. Kemalov. Innovative processes of obtaining hydrogen from water using solar energy // Universum: technical sciences. – 2024. – No. 6(123). – Pp. 34-35.

44. . M. V. Bulychev, S. S. Skiba. Production of methane from methane gas hydrates by substitution with carbon dioxide. Gas Hydrates – Energy of the Future: Proceedings of the First Russian Gas Hydrate Conference (RGC I). – 2024. – No. 1. – Pp. 62-64. DOI: 10.1016/j.tca.2024.179737

45. . D. S. Katrich, G. M. Korableva, D. A. Agarkov, A. V. Samoilov, and S. I. Bredikhin. Study of Internal Steam Conversion of Methane on a TOFE Anode-Supporting Structure Depending on the Composition of the Anode // 11th All-Russian Conference on Fuel Cells and Power Plants Based on Them. – 2024. – No. 11. – Pp. 170-172. DOI: 10.24412/cl-37211-FC-2024.63

46. . T. V. Yarovova, Yu. A. Kamcharova. How to Turn Green Hydrogen into a Cost-Effective Energy Source // Moscow Economic Journal. – 2021. – No. 12. – Pp. 344-357. DOI: 10.24412/2413-046X-2021-10744

47. . V. Ya. Afanasyev, V. M. Kraev, A. I. Tikhonov, and G. V. Serebryakova. Promising Methods of Energy Accumulation // Ugol. – 2024. – No. 7(1195). – Pp. 124-129. DOI: 10.18796/0041-5790-2024-8-124-129

48. . N. D. Stoyanov, T. V. Stoyanova, Yu. G. Malinin, L. R. Tagirov, M. Kh. Salakhov, Kh. M. Salikhov. Photovoltaic Sensor of Hydrogen // International Journal of Applied Sciences and Technologies “Integral”. – 2023. – No. 2. – Pp. 396-406. eISSN: 2658-3569

49. . E. V. Kravchenko. Review of Modern Energy Storage Technologies // Competence. – 2023. – No. 5. – Pp. 33-38. DOI: 10.24412/1993-8780-2023-1-33-38


Review

For citations:


Salah Z., Kornyakova O.Yu., Osintsev K.V., Zamaraeva V.K., Zamaraev S.A. Review of research in the field of hydrogen production using renewable and low-potential energy sources. Alternative Energy and Ecology (ISJAEE). 2025;(7):63-82. (In Russ.) https://doi.org/10.15518/isjaee.2025.07.063-082

Views: 18


ISSN 1608-8298 (Print)