Development of technologies for combined production of electricity and hydrogen on organic fuel without emissions of harmful substances into the atmosphere
https://doi.org/10.15518/isjaee.2025.07.083-101
Abstract
The transition to oxygen-fuel energy cycles for the combined production of electricity and hydrogen production is a promising way to reduce carbon dioxide emissions into the atmosphere in the energy sector. This paper describes the developed oxygen-fuel energy complex with an integrated steam methane reforming unit based on the SCOC-CC cycle for the production of electricity and hydrogen with minimal carbon dioxide emissions into the environment. During the thermodynamic study, it was found that when the produced hydrogen at the outlet of the SMR unit changes from 0 kg/s to 1,33 kg/s, the fuel heat utilization coefficient of the oxygen-fuel energy complex with an integrated SMR unit based on the SCOC-CC cycle is 1,7-6,14% higher than that of the oxygen-fuel energy complex with an integrated SMR unit based on the Allam cycle. This is due to the fact that when using an oxygen-fuel complex with an integrated PCM unit based on the SCOC-CC cycle, the consumption of methane supplied to the reformer furnace is reduced by 0,26-0,92 kg/s relative to the closest analogue.
About the Authors
A. N. RogalevRussian Federation
Rogalev Andrey Nikolaevich, Doctor of Technical Sciences, Associate Professor, Head of Department of Innovative Technologies for High-Tech Industries,
111250, Moscow, Krasnokazarmennaya str., 14, build. 1.
Researcher ID: M-8013-2016;
Scopus ID: 34980078500.
V. O. Kindra
Russian Federation
Kindra Vladimir Olegovich, Candidate of
Technical Sciences, Associate Professor,
111250, Moscow, Krasnokazarmennaya str., 14, build. 1.
Researcher ID: C-6347-2014;
Scopus ID: 57023993700.
I. I. Komarov
Russian Federation
Komarov Ivan Igorevich, Doctor of Engineering Sciences, Associate Professor,
Vice-Rector for Science and Innovations
at the University, Head of the Department
of Thermal Power Plants (TPP),
111250, Moscow, Krasnokazarmennaya str., 14, build. 1.
Scopus ID: 56105319600.
D. S. Kovalev
Russian Federation
Kovalev Dmitriy Sergeevich, Post-Graduate
Student, Assistant Professor,
111250, Moscow, Krasnokazarmennaya str., 14, build. 1.
Scopus ID: 57426119300.
M. V. Oparin
Russian Federation
Oparin Maxim Vitalievich, Junior Research
Assistant,
111250, Moscow, Krasnokazarmennaya str., 14, build. 1.
Scopus ID: 36156158100.
References
1. . Global and Russian Energy Outlook 2019 / A. A. Makarov, T. A. Mitrova, V. A. Kulagin // ERI RAS – Moscow School of Management SKOLKOVO – Moscow, 2019. – 210 p.
2. . Analysis of fossil fuel energy consumption and environmental impacts in European countries / F. Martins, C. Felgueiras, M. Smitkova, N. Caetano // Energies. – 2019. Vol. 12(6). – P. 964.
3. . IEA 2021 Global Energy Review 2021 (Paris: IEA)
4. . Net, I. E. A. Zero by 2050: a roadmap for the global energy sector // Int Energy Agency. – 2021. – Vol. 224.
5. . World energy outlook 2020 / L. Cozzi, T. Gould, S. Bouckart [et al.] // Energy. – 2020. – Vol. 2019. – P. 30.
6. . A comparative overview of hydrogen production processes / P. Nikolaidis, A. Poullikkas // Renewable and sustainable energy reviews. – 2017. – Vol. 67. – Pp. 597-611.
7. . Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development / S. E. Hosseini, M. A. Wahid // Renewable and Sustainable Energy Reviews. – 2016. – Vol. 57. – Pp. 850-866.
8. . Hydrogen production by PEM water electrolysis–A review / S. S. Kumar, V. Himabindu // Materials Science for Energy Technologies. – 2019. – Vol. 2. – №. 3. – Pp. 442-454.
9. . Kindra, V. O., Rogalev, A. N., Kovalev, D. S., Ilin, I. V., & Levina, A. I. Research and development of high temperature gas-cooled reactor nuclear power plants for combined production of electricity, heat and hydrogen / International Journal of Hydrogen Energy. – 2025 – V. 148. – P. 149968.
10. . Simulation study on 660 MW coal-fired power plant coupled with a steam ejector to ensure NOx reduction ability / W. Chen, G. Zhang, B. Li, M. Liu, J. Liu //Applied Thermal Engineering. – 2017. – Vol. 111. – Pp. 550-561.
11. . Improvement of ammonia mixing in an industrial scale selective catalytic reduction De-NOx system of a coal-fired power plant: A numerical analysis / J. Sohn, I. S. Hwang, J. Hwang // Process safety and environmental protection. – 2021. – Vol. 147. – Pp. 334-345.
12. . Technology choice for reducing NOx emissions: An empirical study of Chinese power plants / T. Ma, K. Takeuchi // Energy Policy. – 2017. – Vol. 102. – Pp. 362-376.
13. . Selection and design of post-combustion CO2 capture process for 600 MW natural gas fueled thermal power plant based on operability / R. Dutta, L. O. Nord, O. Bolland // Energy. – 2017. – Vol. 121. – Pp. 643-656.
14. . Performance evaluation of thermal power plants considering CO2 emission: A multistage PCA, clustering, game theory and data envelopment analysis / R. Mahmoudi, A. Emrouznejad, H. Khosroshahi, M. Khashei, P. Rajabi // Journal of cleaner production. – 2019. – Vol. 223. – Pp. 641-650.
15. . Thermodynamic analysis of cycle arrangements of the coal-fired thermal power plants with carbon capture / V. O. Kindra, I. A. Milukov, I. V. Shevchenko [et al.] // Archives of Thermodynamics. – 2021. – Pp. 103-121.
16. . Up-to-date CO2 capture in thermal power plants / M. Kanniche, Y. Le Moullec, O. Authier [et al.] // Energy Procedia. – 2017. – Vol. 114. – Pp. 95-103.
17. . Marginal abatement costs of CO2 emissions in the thermal power sector: A regional empirical analysis from China / J. Peng, B. -Y. Yu, H. Liao, Y. M. Wei // Journal of Cleaner Production. – 2018. – Vol. 171. – Pp. 163-174.
18. . Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor / J. Hong, G. Chaudhry, J. G. Brisson [et al.] // Energy. – 2009. – Vol. 34. – №. 9. – Pp. 1332-1340.
19. . Research and development of a high-performance oxy-fuel combustion power cycle with coal gasification / V. Kindra, A. Rogalev, O. Zlyvko [et al.] // Archives of Thermodynamics. – 2021. – Vol. 42. – №. 4. – Pp. 155-168.
20. . Thermodynamic analysis of an innovative steam turbine power plant with oxy-methane combustors / V. Kindra, S. Osipov, O. Zlyvko // Archives of Thermodynamics. – 2021. – Pp. 123-140.
21. . A technical evaluation, performance analysis and risk assessment of multiple novel oxy-turbine power cycles with complete CO2 capture / F. C. Barba, G. M. D. Sánchez, B. S. Seguí [et al.] // Journal of cleaner production. – 2016. – Vol. 133. – Pp. 971-985.
22. . Demonstration of the Allam Cycle: an update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture / R. Allam, S. Martin, B. Forrest [et al.] // Energy Procedia. – 2017. – Vol. 114. – Pp. 5948-5966.
23. . Two novel oxy-fuel power cycles integrated with natural gas reforming and CO2 capture / N. Zhang, N. Lior // Energy. – 2008. – Vol. 33. – №. 2. – Pp. 340-351.
24. . An oxy-fuel power plant for hydrogen production with near-zero emissions / V. Kindra, O. Zlyvko, A. Zonov [et al.] // SMART Automatics and Energy: Proceedings of SMART-ICAE 2021. – Singapore: Springer Nature Singapore, 2022. – Pp. 291-301.
25. . A study of low-potential heat utilization methods for oxy-fuel combustion power cycles / A. Rogalev, N. Rogalev, V. Kindra [et al.] // Energies. – 2021. – Vol. 14. – №. 12. – P. 3364.
26. . Thermodynamic analysis of semi-closed cycles with oxygen fuel combustion and carbon dioxide-steam heat carrier / V. O. Kindra, I. I. Komarov, S. K. Osipov [et al.] // Proceedings of the Russian Academy of Sciences. Energy. – 2023. – No. 3. – Pp. 18-33.
27. . Aspen Technology, Inc. Aspen Plus. [Available online] URL: https://www.aspentech.com/en/products/engineering/aspen-plus (Accessed on 19 July 2021).
28. . NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, Version 10.0, National Institute of Standards and Technology / E. W. Lemmon, I. H. Bell, M.L. Huber [et al.] // Standard Reference Data Program, Gaithersburg. – 2018. – Pp. 45-46.
Review
For citations:
Rogalev A.N., Kindra V.O., Komarov I.I., Kovalev D.S., Oparin M.V. Development of technologies for combined production of electricity and hydrogen on organic fuel without emissions of harmful substances into the atmosphere. Alternative Energy and Ecology (ISJAEE). 2025;(7):83-101. (In Russ.) https://doi.org/10.15518/isjaee.2025.07.083-101































