Интенсификация производства газообразных носителей водорода за счет применения электролизной ячейки в системе двухстадийного анаэробного сбраживания
https://doi.org/10.15518/isjaee.2025.10.018-043
Аннотация
Анаэробное сбраживание (АС) представляет собой перспективный метод получения биогаза из органических отходов. Перспективным направлением исследования является двухстадийное анаэробное сбраживание, в процессе которого возможно одновременное получение водорода и биогаза. Однако внедрение данного процесса ограничено ввиду низкой скорости и эффективности процесса, поэтому одной из стратегий является использование микробной электролизной ячейки (МЭЯ), которая позволяет улучшить конверсию субстрата в биогаз. В данной работе было исследовано влияние приложенного напряжения (0; 1,2 и 2,4 В) на интенсивность продукции метана при двухстадийном АС модели жидких органических отходов, предобработанных в аппарате вихревого слоя (АВС). В результате, наибольший объемный выход биометана 0,151 ± 0,071 л/(л·ч) был получен при разнице потенциалов на электродах МЭЯ 1,2 В. В процессе эксперимента энергетический вклад темновой ферментации в общий объемный энергетический выход составлял 58,81-66,2%, при этом наименьшее значение 58,81% было получено при напряжении 1,2 В. Наименьшая концентрация растворимых продуктов метаболизма 0,59 г/л в метаногенном реакторе также наблюдалась при разнице потенциалов 1,2 В. В микробном сообществе ацидогенного реактора DF основным продуцентом водорода был род Thermoanaerobacterium (54,80-84,58%). В реакторе MF под воздействием напряжения 1,2 В происходило обогащение сообщества гидрогенотрофными метаногенами рода Methanothermobacter и водород-продуцирующих родов Thermanaerovibrio, Cloacimonadaceae W5, Acetomicrobium, Coprothermobacter. Таким образом применение микробной электролизной ячейки с разницей потенциалов 1,2 В позволяет повысить энергетический выход системы двухстадийного анаэробного сбраживания предобработанной в АВС модели пищевых отходов на 33%.
Ключевые слова
Об авторах
А. А. ИваненкоРоссия
Иваненко Артем Александрович, инженер лаборатории микробиологии антропогенных мест обитания
Researcher ID: JAX-4154-2023
Scopus Author ID: 57195447250
119071, Москва, Ленинский пр-т, дом 33, строение 2
119899, Москва, Ленинские Горы, дом 1, строение 12
А. А. Ковалев
Россия
Ковалев Андрей Александрович, главный научный сотрудник лаборатории биоэнергетических технологий, доктор технических наук
Researcher ID: F-7045-2017
Scopus Author ID: 57205285134
+79263477955
109428, Москва, 1-й Институтский проезд, 5
Д. А. Ковалев
Россия
Ковалев Дмитрий Александрович, заведующий лабораторией биоэнергетических технологий, кандидат технических наук
Researcher ID: K-4810-2015
109428, Москва, 1-й Институтский проезд, 5
Е. А. Журавлева
Россия
Журавлева Елена Александровна, науч. сотр. лаборатории микробиологии антропогенных мест обитания, канд. биол. наук
Researcher ID: JBS-4297-2023
Scopus Author ID: 57216346570
119071, Москва, Ленинский пр-т, дом 33, строение 2
С. В. Шехурдина
Россия
Шехурдина Светлана Витальевна, младший научный сотрудник лаборатории микробиологии антропогенных мест обитания, аспирант
Scopus Author ID: 57564192200
119071, Москва, Ленинский пр-т, дом 33, строение 2
А. А. Лайкова
Россия
Лайкова Александра Алексеевна, младший научный сотрудник лаборатории микробиологии антропогенных мест обитания, аспирант
Researcher ID: IVU-7977-2023
Scopus Author ID: 58044317600
119071, Москва, Ленинский пр-т, дом 33, строение 2
Н. Г. Лойко
Россия
Лойко Наталия Геннадиевна, с. н. с. лаборатории нефтяной микробиологии
Scopus Author ID: 7006188688
119071, Москва, Ленинский пр-т, дом 33, строение 2
Е. А. Андреев
Россия
Андреев Егор Андреевич, с. н. с. НИЛ химического дизайна бионаноматериалов, кафедра химической энзимологии
Scopus Author ID: 57201615755
119991, Москва, Ленинские горы, 1
Ю. В. Литти
Россия
Литти Юрий Владимирович, заведующий лабораторией микробиологии антропогенных мест обитания, кандидат биологических наук
Researcher ID: C-4945-2014
Scopus Author ID: 55251689800
119071, Москва, Ленинский пр-т, дом 33, строение 2
Список литературы
1. Usmani R. A. Potential for energy and biofuel from biomass in India // Renewable Energy. 2020; 155:92130. https://doi.org/10.1016/j.renene.2020.03.146.
2. Kovalev А. А., Kovalev D. А., Panchenko V. A., Zhuravleva Е. А., Laikova А. А., Shekhurdina S. V. et al. Approbation of an innovative method of pretreatment of dark fermentation feedstocks // International Journal of Hydrogen Energy. 2022; 47:33272-81. https://doi.org/10.1016/j.ijhydene.2022.08.051.
3. Nurgaliev T., Müller J., Koshelev V. Biogas Potential of Agriculture // Bioenergy Research. 2022; 15:2132-44. https://doi.org/10.1007/s12155-022-10409-1.
4. Wang C., Liu Y., Gao X., Chen H., Xu X., Zhu L. Role of biochar in the granulation of anaerobic sludge and improvement of electron transfer characteristics // Bioresource Technology. 2018; 268:28-35. https://doi.org/10.1016/j.biortech.2018.07.116.
5. Cremonez P. A., Teleken J. G., Weiser Meier T. R., Alves H. J. Two-Stage anaerobic digestion in agroindustrial waste treatment: A review // Journal of Environmental Management. 2021; 281. https://doi.org/10.1016/j.jenvman.2020.111854.
6. An X., Xu Y., Dai X. Biohythane production from two-stage anaerobic digestion of food waste: A review // Journal of Environmental Sciences (China). 2024; 139:334-49. https://doi.org/10.1016/j.jes.2023.04.031.
7. Ghanimeh S., Al-Sanioura D., Saikaly P. E., El-Fadel M. Comparison of Single-Stage and Two-Stage Thermophilic Anaerobic Digestion of SS-OFMSW During the Start-Up Phase // Waste and Biomass Valorization. 2020; 11:6709-16. https://doi.org/10.1007/s12649-019-00891-8.
8. Micolucci F., Gottardo M., Pavan P., Cavinato C., Bolzonella D. Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste // Journal of Cleaner Production. 2018; 171:1376-85. https://doi.org/10.1016/j.jclepro.2017.10.080.
9. Park J., Kwon Y., Kim G. B., Jo Y., Park S., Hye Yoon Y. et al. Enhanced performance and economic feasibility of sewage sludge digestion using a twostage anaerobic digestion with a dynamic membrane and alkaline-thermal pretreatment // Bioresource Technology. 2025; 415:131661. https://doi.org/10.1016/j.biortech.2024.131661.
10. Li W., Guo J., Cheng H., Wang W., Dong R. Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation // Applied Energy. 2017; 189:613-22. https://doi.org/10.1016/j.apenergy.2016.12.101.
11. Lunprom S., Phanduang O., Salakkam A., Liao Q., Imai T., Reungsang A. Bio-hythane production from residual biomass of Chlorella sp. biomass through a two-stage anaerobic digestion // International Journal of Hydrogen Energy. 2019: 3339-46. https://doi.org/10.1016/j.ijhydene.2018.09.064.
12. Ambrose H. W., Chin C. T. L., Hong E., Philip L., Suraishkumar G. K., Sen T. K. et al. Effect of hybrid (microwave-H2O2) feed sludge pretreatment on single and two-stage anaerobic digestion efficiency of real mixed sewage sludge // Process Safety and Environmental Protection. 2020; 136:194-202. https://doi.org/10.1016/j.psep.2020.01.032.
13. Li X., Guo S., Peng Y., He Y., Wang S., Li L. et al. Anaerobic digestion using ultrasound as pretreatment approach: Changes in waste activated sludge, anaerobic digestion performances and digestive microbial populations // Biochemical Engineering Journal. 2018; 139:139-45. https://doi.org/10.1016/j.bej.2017.11.009.
14. Poddar B. J., Nakhate S. P., Gupta R. K., Chavan A. R., Singh A. K., Khardenavis A. A. et al. A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion // International Journal of Environmental Science and Technology. 2022; 19:3429-56. https://doi.org/10.1007/s13762-021-03248-8.
15. Mikheeva E. R., Katraeva I. V., Kovalev A. A., Kovalev D. A., Litti Yu. V. Effects of pretreatment in a vortex layer apparatus on the properties of confectionery wastewater and its dark fermentation // International Journal of Hydrogen Energy. 2022; 47:23165-74. https://doi.org/10.1016/j.ijhydene.2022.05.183.
16. Kovalev A. A., Kovalev D. A., Panchenko V. A., Vivekanand V., Pareek N., Masakapalli S. K. et al. The effect of different feeding intervals of substrate pretreated in a vortex layer apparatus on dark fermentative biohydrogen production // International Journal of Hydrogen Energy. 2025; 146:149975. https://doi.org/10.1016/j.ijhydene.2025.06.165.
17. Litti Yu., Kovalev D., Kovalev A., Katraeva I., Russkova Y., Nozhevnikova A. Increasing the efficiency of organic waste conversion into biogas by mechanical pretreatment in an electromagnetic mill // Journal of Physics: Conference Series. – 2018. – Vol. 1111. https://doi.org/10.1088/1742-6596/1111/1/012013.
18. Mikheeva E. R., Katraeva I. V., Vorozhtsov D. L., Litti Yu. V., Nozhevnikova A. N. Efficiency of Two-Phase Anaerobic Fermentation and the Physicochemical Properties of the Organic Fraction of Municipal Solid Waste Processed in a Vortex-Layer Apparatus // Applied Biochemistry and Microbiology. 2020; 56:736-42. https://doi.org/10.1134/S0003683820060113.
19. Mikheeva E. R., Katraeva I. V., Kovalev A. A., Biryuchkova P. D., Zhuravleva E. A., Vishnyakova A. V. et al. Pretreatment in Vortex Layer Apparatus Boosts Dark Fermentative Hydrogen Production from Cheese Whey // Fermentation. 2022; 8. https://doi.org/10.3390/fermentation8120674.
20. Kovalev A. A., Kovalev D. A., Panchenko V. A., Zhuravleva E. A., Laikova A. A., Shekhurdina S. V. et al. Energy efficiency of hydrogen production during dark fermentation // International Journal of Hydrogen Energy. 2024; 87:171-8. https://doi.org/10.1016/j.ijhydene.2024.08.473.
21. Zheng T., Bian C., Xiao B., Chen X., Wang J., Li L. Performance enhancement of integrating microbial electrolysis cell on two-stage anaerobic digestion of food waste: Electro-methanogenic stage versus electro-two stages // Bioresource Technology. 2023; 386. https://doi.org/10.1016/j.biortech.2023.129562.
22. Wang X. T., Zhang Y. F., Wang B., Wang S., Xing X., Xu X. J. et al. Enhancement of methane production from waste activated sludge using hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) process – A review // Bioresource Technology. 2022; 346. https://doi.org/10.1016/j.biortech.2021.126641.
23. Hassanein A., Witarsa F., Guo X., Yong L., Lansing S., Qiu L. Next generation digestion: Complementing anaerobic digestion (AD) with a novel microbial electrolysis cell (MEC) design // International Journal of Hydrogen Energy. 2017; 42:28681-9. https://doi.org/10.1016/j.ijhydene.2017.10.003.
24. Peng C., Wang T., Feng Y., Fan X., Niu J., Wang J. et al. Enhanced hydrolysis and methane yield of temperature-phased dewatered sludge anaerobic digestion by microbial electrolysis cell // Bioresource Technology. 2024; 400:130682. https://doi.org/10.1016/j.biortech.2024.130682.
25. Yuan Y., Zhang L., Chen T., Huang Y., Qian X., He J. et al. Simultaneous recovery of bio-sulfur and bio-methane from sulfate-rich wastewater by a bioelectrocatalysis coupled two-phase anaerobic reactor // Bioresource Technology. 2022; 363. https://doi.org/10.1016/j.biortech.2022.127883.
26. Kovalev A. A., Kovalev D. A., Karaeva J. V., Vivekanand V., Pareek N., Masakapalli S. K. et al. Innovative organic waste pretreatment approach for efficient anaerobic bioconversion: Effect of recirculation ratio at pre-processing in vortex layer apparatus on biogas production // International Journal of Hydrogen Energy. 2024; 53:208-17. https://doi.org/10.1016/j.ijhydene.2023.12.044.
27. Kovalev A. A., Kovalev D. A., Panchenko V. A., Vivekanand V., Zhuravleva E. A., Litti Yu. V. Bioelectrochemical system for green energy production in a circular bioeconomy: Conversion of solar energy and organic waste into hydrogen carrier gases // International Journal of Hydrogen Energy. 2025; 152:150206. https://doi.org/10.1016/j.ijhydene.2025.150206.
28. Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Katraeva I. V., Panchenko V. A., Fiore U. et al. Two-stage anaerobic digestion with direct electric stimulation of methanogenesis: The effect of a physical barrier to retain biomass on the surface of a carbon cloth-based biocathode // Renewable Energy. 2022; 181:966-77. https://doi.org/10.1016/j.renene.2021.09.097.
29. Kovalev A. A., Mikheeva E. R., Katraeva I. V., Kovalev D. A., Kozlov A. M., Yu V. L. Bioenergy recovery from two-stage mesophilic-thermophilic anaerobic digestion of cheese whey // International Journal of Hydrogen Energy. 2023; 48. https://doi.org/10.1016/j.ijhydene.2022.11.003.
30. Lee J. Y., Lee S. H., Park H. D. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors // Bioresource Technology. 2016; 205:205-12. https://doi.org/10.1016/j.biortech.2016.01.054.
31. Yin Q., Yang S., Wang Z., Xing L., Wu G. Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide // Chemical Engineering Journal. 2018; 333:216-25. https://doi.org/10.1016/j.cej.2017.09.160.
32. Merkel A. Y., Tarnovetskii I. Y., Podosokorskaya O. A., Toshchakov S. V. Analysis of 16S rRNA Primer Systems for Profiling of Thermophilic Microbial Communities // Microbiology. 2019; 88:671-80. https://doi.org/10.1134/S0026261719060110.
33. Begmatov S., Dorofeev A. G., Kadnikov V. V., Beletsky A. V., Pimenov N. V., Ravin N. V. et al. The structure of microbial communities of activated sludge of large-scale wastewater treatment plants in the city of Moscow // Scientific Reports. 2022; 12. https://doi.org/10.1038/s41598-022-07132-4.
34. Laikova A. A., Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Shekhurdina S. V., Litti Yu. V. The feasibility of single-stage biohythane production in a semi-continuous thermophilic bioreactor: Influence of operating parameters on the process kinetics and microbial community dynamics // International Journal of Hydrogen Energy. 2024; 55:1486-94. https://doi.org/10.1016/j.ijhydene.2023.12.140.
35. Pasupuleti S. B., Sarkar O., Venkata Mohan S. Upscaling of biohydrogen production process in semi-pilot scale biofilm reactor: Evaluation with food waste at variable organic loads // International Journal of Hydrogen Energy. 2014; 39:7587-96. https://doi.org/10.1016/j.ijhydene.2014.02.034.
36. Pérez-Rangel M., Barboza-Corona J. E., Valdez-Vazquez I. Effect of the organic loading rate and temperature on hydrogen production via consolidated bioprocessing of raw lignocellulosic substrate // International Journal of Hydrogen Energy. 2023; 48:35907-18. https://doi.org/10.1016/j.ijhydene.2023.05.329.
37. Saidi R., Hamdi M., Bouallagui H. Enhanced hydrogen and methane production from date fruit wastes using semi continuous two-stage anaerobic digestion process with increasing organic loading rates // Process Safety and Environmental Protection. 2023; 174:267-75. https://doi.org/10.1016/j.psep.2023.04.018.
38. Lee D. Y., Li Y. Y., Oh Y. K., Kim M. S., Noike T. Effect of iron concentration on continuous H2 production using membrane bioreactor // International Journal of Hydrogen Energy. 2009; 34:1244-52. https://doi.org/10.1016/j.ijhydene.2008.11.093.
39. Laikova A., Zhuravleva E., Shekhurdina S., Ivanenko A., Biryuchkova P., Loiko N. et al. The intracellular accumulation of iron coincides with enhanced biohydrogen production by Thermoanaerobacterium thermosaccharolyticum // Chemical Engineering Journal. 2024; 497:154961. https://doi.org/10.1016/j.cej.2024.154961.
40. Qiu Y., Lower L., Rondon Berrio V., Cunniffe J., Kolar P., Cheng J. et al. Impacts of Municipal and Industrial Organic Waste Components on the Kinetics and Potentials of Biomethane Production via Anaerobic Digestion // Waste and Biomass Valorization. 2025; 16:5019-35. https://doi.org/10.1007/S12649-025-02951-8/TABLES/4.
41. Schievano A., Tenca A., Scaglia B., Merlino G., Rizzi A., Daffonchio D. et al. Two-stage vs single-stage thermophilic anaerobic digestion: Comparison of energy production and biodegradation efficiencies // Environmental Science & Technology. 2012; 46:8502-10. https://doi.org/10.1021/es301376n.
42. Ghimire A., Valentino S., Frunzo L., Trably E., Escudié R., Pirozzi F. et al. Biohydrogen production from food waste by coupling semi-continuous dark-photofermentation and residue post-treatment to anaerobic digestion: A synergy for energy recovery // International Journal of Hydrogen Energy. 2015; 40:16045-55. https://doi.org/10.1016/j.ijhydene.2015.09.117.
43. Arudchelvam Y., Perinpanayagam M., Nirmalakhandan N. Predicting VFA formation by dark fermentation of particulate substrates // Bioresource Technology. 2010; 101:7492-9. https://doi.org/10.1016/j.biortech.2010.04.045.
44. Parajuli A., Khadka A., Sapkota L., Ghimire A. Effect of Hydraulic Retention Time and Organic-Loading Rate on Two-Staged, Semi-Continuous Mesophilic Anaerobic Digestion of Food Waste during Start-Up // Fermentation. 2022; 8. https://doi.org/10.3390/fermenta-tion8110620.
45. Castelló E., Nunes Ferraz-Junior A. D., Andreani C., Anzola-Rojas M. del P., Borzacconi L., Buitrón G. et al. Stability problems in the hydrogen production by dark fermentation: Possible causes and solutions // Renewable and Sustainable Energy Reviews. 2020; 119. https://doi.org/10.1016/j.rser.2019.109602.
46. Lopez-Hidalgo A. M., Smoliński A., Sanchez A. A meta-analysis of research trends on hydrogen production via dark fermentation // International Journal of Hydrogen Energy. 2022; 47:13300-39. https://doi.org/10.1016/j.ijhydene.2022.02.106.
47. Rajesh Banu J., Kavitha S., Yukesh Kannah R., Bhosale R. R., Kumar G. Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route // Bioresource Technology. 2020; 298. https://doi.org/10.1016/j.biortech.2019.122378.
48. Prasanna Kumar D. J., Mishra R. K., Chinnam S., Binnal P., Dwivedi N. A comprehensive study on anaerobic digestion of organic solid waste: A review on configurations, operating parameters, techno-economic analysis and current trends // Biotechnology Notes. 2024; 5:33-49. https://doi.org/10.1016/j.biotno.2024.02.001.
49. Candel M., Ballesteros L., Fernandez-Rodriguez J., Perez M., Solera R. Study of the Effect of Temperature to Optimize the Anaerobic Digestion of Slaughterhouse Sludge by Co-Digestion with Slaughterhouse Wastewater Recycling. 2025; 10:47. https://doi.org/10.3390/recycling10020047.
50. Jiang Z., Yu Q., Sun C., Wang Z., Jin Z., Zhu Y. et al. Additional electric field alleviates acidity suppression in anaerobic digestion of kitchen wastes via enriching electro-active methanogens in cathodic biofilms // Water Research. 2022; 212. https://doi.org/10.1016/j.watres.2022.118118.
51. Tao Z., Wang D., Yao F., Huang X., Wu Y., Wu Y. et al. Influence of low voltage electric field stimulation on hydrogen generation from anaerobic digestion of waste activated sludge // Science of the Total Environment. 2020; 704. https://doi.org/10.1016/j.scitotenv.2019.135849.
52. Cai Y., Li H., Qu G., Hu Y., Zou H., Zhao S. et al. Responses of applied voltages on the archaea microbial distribution in sludge digestion // Chemosphere. 2023; 339. https://doi.org/10.1016/j.chemosphere.2023.139639.
53. Xing X., Wang X. T., Zhao L., Ren N. Q., Lee D. J., Chen C. Mitigating over-acidification and enhancing methane production in hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) treating fruit and vegetable wastewater: performance and mechanisms // Chemical Engineering Journal. 2025; 519:164749. https://doi.org/10.1016/j.cej.2025.164749.
54. Yang Y., Bu J., Tiong Y. W., Xu S., Zhang J., He Y. et al. Enhanced thermophilic dark fermentation of hydrogen production from food waste by Fe-modified biochar // Environmental Research. 2024; 244. https://doi.org/10.1016/j.envres.2023.117946.
55. Yin Y., Wang J. Mechanisms of enhanced biohydrogen production from macroalgae by ferrous ion: Insights into correlations of microbes and metabolites // Bioresource Technology. 2019; 291. https://doi.org/10.1016/j.biortech.2019.121808.
56. Ren Y., Si B., Liu Z., Jiang W., Zhang Y. Promoting dark fermentation for biohydrogen production: Potential roles of iron-based additives // International Journal of Hydrogen Energy. 2022; 47:1499-515. https://doi.org/10.1016/j.ijhydene.2021.10.137.
57. Bardi M. J., Vinardell S., Astals S., Koch K. Opportunities and challenges of micronutrients supplementation and its bioavailability in anaerobic digestion: A critical review // Renewable and Sustainable Energy Reviews. 2023; 186. https://doi.org/10.1016/j.rser.2023.113689.
58. Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Laikova A. A., Shekhurdina S. V., Litti Yu. V. Pretreatment of anaerobic fermentation feedstock in a vortex layer apparatus: Effect of the working chamber ferromagnetic core on biogas production // International Journal of Hydrogen Energy. 2024; 57:764-8. https://doi.org/10.1016/j.ijhydene.2024.01.053.
59. Zhao W., Su X., Zhang Y., Xia D., Hou S., Zhou Y. et al. Microbial electrolysis enhanced bioconversion of coal to methane compared with anaerobic digestion: Insights into differences in metabolic pathways // Energy Conversion and Management. 2022; 259. https://doi.org/10.1016/j.enconman.2022.115553.
60. Liang L., Sun C., Jin Z., Wang M., Yu Q., Zhao Z. et al. Magnetite-mediated electrically connected community for shortening startup of methane-dependent denitrification in a membrane biofilm reactor // ChemicalEngineering Journal. 2022; 428. https://doi.org/10.1016/j.cej.2021.132004.
61. Joicy A., Seo H., Lee M. E., Kim D. H., Cho S. K., Ahn Y. Enhanced methane production using pretreated sludge in MEC-AD system: Performance, microbial activity, and implications at different applied voltages // International Journal of Hydrogen Energy. 2022; 47:40731-41. https://doi.org/10.1016/j.ijhydene.2022.07.154.
62. Wang K., Zhu G., Feng Q., Li X., Lv Y., Zhao Y. et al. Influence of applied voltage on bioelectrochemical enhancement of biomethanation for low-rank coal and microbial community distribution // Bioresource Technology. 2023; 369. https://doi.org/10.1016/j.biortech.2022.128466.
63. Zhu G., Feng Q., Wang K., Song Y. C., Zhou Y., Zhou Q. Investigating the performance of different applied voltages on lignite biomethanation in microbial electrolytic cell coupled anaerobic digestion // International Journal of Hydrogen Energy. 2024; 52:147-59. https://doi.org/10.1016/j.ijhydene.2023.09.007.
64. Litti Yu. V., Potekhina M. A., Zhuravleva E. A., Vishnyakova A. V., Gruzdev D. S., Kovalev A. A. et al. Dark fermentative hydrogen production from simple sugars and various wastewaters by a newly isolated Thermoanaerobacterium thermosaccharolyticum SP-H2 // International Journal of Hydrogen Energy. 2022; 47. https:/doi.org/10.1016/j.ijhydene.2022.05.235.
65. Kim G., Cho K. S. Bacterial synergy and relay for thermophilic hydrogen production through dark fermentation using food waste // Bioresource Technology. 2025; 416:131748. https://doi.org/10.1016/j.biortech.2024.131748.
66. Feng S., Guo W., Zhang S., Luo G., Nguyen H. T., Nguyen N. C. et al. Optimization of hydraulic retention time in continuous orange peel crude enzyme – mediated dark fermentation for sustainable biohydrogen production from synthetic swine wastewater // Journal of Water Process Engineering. 2025; 73:107714. https://doi.org/10.1016/j.jwpe.2025.107714.
67. Sarkar O., Rova U., Christakopoulos P., Matsakas L. Effect of metals on the regulation of acidogenic metabolism enhancing biohydrogen and carboxylic acids production from brewery spent grains: Microbial dynamics and biochemical analysis // Engineering in Life Sciences. 2022; 22:650-61. https://doi.org/10.1002/elsc.202200030.
68. Canto-Robertos M., Quintal-Franco C.,Ponce-Caballero C., Vega-De Lille M., Moreno-Andrade I. Inhibition of hydrogen production by endogenous microorganisms from food waste // Brazilian Journal of Chemical Engineering. 2023; 40:137-50. https://doi.org/10.1007/s43153-022-00235-5.
69. Wang H., Liu Y., Du H., Zhu J., Peng L., Yang C. et al. Exploring the effect of voltage on biogas production performance and the methanogenic pathway of microbial electrosynthesis // Biochemical Engineering Journal. 2021; 171. https://doi.org/10.1016/j.bej.2021.108028.
70. Xiao B., Chen X., Han Y., Liu J., Guo X. Bioelectrochemical enhancement of the anaerobic digestion of thermal-alkaline pretreated sludge in microbial electrolysis cells // Renewable Energy. 2018; 115:1177-83. https://doi.org/10.1016/j.renene.2017.06.043.
71. Zhao L., Wang X. T., Chen K. Y., Wang Z. H., Xu X. J., Zhou X. et al. The underlying mechanism of enhanced methane production using microbial electrolysis cell assisted anaerobic digestion (MEC-AD) of proteins // Water Research. 2021; 201. https://doi.org/10.1016/j.watres.2021.117325.
72. Wang Z., He H., Yan J., Xu Z., Yang G., Wang H. et al. Influence of temperature fluctuations on anaerobic digestion: Optimum performance is achieved at 45 °C // Chemical Engineering Journal. 2024; 492:152331. https://doi.org/10.1016/j.cej.2024.152331.
73. Li M. T., Rao L., Wang L., Gou M., Sun Z. Y., Xia Z. Y. et al. Bioaugmentation with syntrophic volatile fatty acids-oxidizing consortia to alleviate the ammonia inhibition in continuously anaerobic digestion of municipal sludge // Chemosphere. 2022; 288. https://doi.org/10.1016/j.chemosphere.2021.132389.
74. Mikheeva R. R., Katraeva I. V., Kovalev A. A., Shekhurdina S. V., Zhuravleva E. A., Laikova A. A. et al. Optimization of two-stage thermophilic anaerobic digestion of dairy wastewater: Effect of carrier material on process performance and microbial community // International Journal of Hydrogen Energy. 2024;88:1108– 22. https://doi.org/10.1016/j.ijhydene.2024.09.213.
75. Ho D., Jensen P., Batstone D. Effects of temperature and hydraulic retention time on acetotrophic pathways and performance in high-rate sludge digestion // Environmental Science & Technology. 2014; 48:6468-76. https://doi.org/10.1021/es500074j.
76. Zhao Y., Feng Q., Wang J., Zi H., Zhang Y., Zhang X. et al. Mechanistic insights into electric field-enhanced methanation of lignite via microbial metabolic pathway optimization // Bioresource Technology. 2025; 423:132223. https://doi.org/10.1016/j.biortech.2025.132223.
77. Liu Y., Ma S., Huang L., Wang S., Liu G., Yang H. et al. Two-step heating mode with the same energy consumption as conventional heating for enhancing methane production during anaerobic digestion of swine wastewater // Journal of Environmental Management. 2018; 209:301-7. https://doi.org/10.1016/j.jen-vman.2017.12.061.
78. Gao Y., Ryu H., Santo Domingo J. W., Lee H. S. Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells // Bioresource Technology. 2014; 153:245-53. https://doi.org/10.1016/j.biortech.2013.11.077.
Рецензия
Для цитирования:
Иваненко А.А., Ковалев А.А., Ковалев Д.А., Журавлева Е.А., Шехурдина С.В., Лайкова А.А., Лойко Н.Г., Андреев Е.А., Литти Ю.В. Интенсификация производства газообразных носителей водорода за счет применения электролизной ячейки в системе двухстадийного анаэробного сбраживания. Альтернативная энергетика и экология (ISJAEE). 2025;(10):18-43. https://doi.org/10.15518/isjaee.2025.10.018-043
For citation:
Ivanenko A.A., Kovalev A.A., Kovalev D.A., Zhuravleva E.A., Shekhurdina S.V., Laikova A.A., Loiko N.G., Andreev E.A., Litti Yu.V. Intensification of the gaseous hydrogen carriers production using an electrolytic cell in the two-stage anaerobic digestion. Alternative Energy and Ecology (ISJAEE). 2025;(10):18-43. (In Russ.) https://doi.org/10.15518/isjaee.2025.10.018-043
JATS XML































