Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Study of low-power plasma-chemical module for carbon dioxide decomposition

https://doi.org/10.15518/isjaee.2025.10.083-092

Abstract

This article demonstrates the relevance of the plasma method for carbon dioxide utilization. An installation for oxygen regeneration from carbon dioxide based on quasi-stationary pulsed nonequilibrium plasma is described. The percentage of oxygen in the mixture obtained using an electrochemical sensor is presented. According to the results of the work, it was found that in the installation, the maximum percentage of oxygen is achieved in the interelectrode gap of 3 mm at a pulse repetition rate of 5 kHz. The energy spent on the formation of one oxygen molecule at a flow rate of 7 l/min is 7,44 eV/mol. It was shown that in addition to oxygen, ozone is obtained in this installation, which allows an additional increase in the percentage of oxygen in the resulting mixture by decomposing ozone in hoptalum. Thus, it was shown that it is possible to create a mobile device for processing carbon dioxide obtained during human breathing into oxygen based on the discharge described in the article.

About the Authors

A. G. Kuznetsov
N. E. Bauman Moscow State Technical University (BMSTU)
Russian Federation

Kuznetsov Artemiy Georgievich, Engineer of the Department of Refrigeration, Cryogenic Engineering, Air Conditioning and Life Support Systems

+7-901-581-25-71

105005, Moscow, Baumanskaya 2-nd, str., 5



V. A. Voronov
N. E. Bauman Moscow State Technical University (BMSTU)
Russian Federation

Voronov Vladimir Andreevich, PhD in Engineering, Associate Professor of the Department of Refrigeration, Cryogenic Engineering, Air Conditioning and Life Support Systems

105005, Moscow, Baumanskaya 2-nd, str., 5



A. I. Smorodin
N. E. Bauman Moscow State Technical University (BMSTU)
Russian Federation

Smorodin Anatoly Ivanovich, PhD in Engineering, Associate Professor of the Department of Refrigeration, Cryogenic Engineering, Air Conditioning and Life Support Systems

105005, Moscow, Baumanskaya 2-nd, str., 5



References

1. Weizong Wang, Danhua Mei, Xin Tu, Annemie Bogaerts. Gliding arc plasma for CO2 conversion: Better insights by a combined experimental and modelling approach // Chemical Engineering Journal. 2017:330;11-25.

2. Ju Li, Shengjie Zhu, Ke Lu, Cunhua Ma, Dezheng Yang, Feng Yu. CO2 conversion in a coaxial dielectric barrier discharge plasma reactor in the presence of mixed ZrO2-CeO2 // Journal of Environmental Chemical Engineering. – 2021. – Volume 9. – Issue 1.

3. Sun S. R. et al. Direct conversion of CO2 to CO in a gliding arc plasma: The effect of oxygen additives // Journal of CO2 Utilization. 2019;34: 436-444.

4. Snoeckx R. & Bogaerts A. Plasma technology – a novel solution for CO2 conversion? // Chemical Society Reviews. 2017;46(19): 5805-5863.

5. Bogaerts A. & Centi G. Plasma technology for CO2 conversion: A personal perspective on prospects and gaps // Frontiers in Energy Research. 2020:8; 111.

6. L. Spencer. The Study of CO2 Conversion in a Microwave/Catalyst System. PhD Thesis, University of Michigan, Michigan, USA, 2012.

7. Tu X. & Whitehead J. C. Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge // Applied Catalysis B: Environmental. 2012;125: 439-448.

8. Osmokrovic P. et al. Mechanisms of carbon dioxide plasma decomposition // Journal of Physics D: Applied Physics. 2006;39(16): 3511.

9. Zhang X. et al. Plasma activation of CO2 in a dielectric barrier discharge: A chemical kinetic model from the microdischarge to the reactor scale // Journal of CO2 Utilization. 2018;24: 536-546.

10. Mei D. et al. CO2 reforming with methane for syngas production using a dielectric barrier discharge plasma coupled with Ni/γ-Al2O3 catalysts // International Journal of Hydrogen Energy. 2016;41(2):815-827.

11. Aerts R. et al. CO2 splitting in a dielectric barrier discharge plasma: A combined experimental and computational study // ChemSusChem. 2012;5(4): 617-626.

12. L. S. Polak, D. I. Slovetsky, and T. V. Fedoseeva. Relaxation Studies of Particle Excitation Mechanisms in a Smoldering Discharge in Carbon Dioxide and Its Mixture with Argon // High Temperature. 19;6 (1981): 1135-1143. 19;6 (1981): 810-817.

13. Sharapov N. A., Chukanov V. I., Distanov R. R., Kozlov N. P., Pekshev A.V., Khomenko V. A., Vagapov A. B., Dusalieva R. R. Research of an air plasma-chemical reactor for a new medical device // Engineering Journal: Science and Innovations. – 2013, issue. 10. URL: http://engjournal.ru/catalog/machin/plasma/1028.html (Accessed on 02.09.2024).

14. Kuznetsov A. G., Sharapov N. A., Voronov V. A., and Denshchikov D. S. A method for small-scale production of hydrogen using a plasma chemical reactor // Alternative Energy and Ecology (ISJAEE), 2025;(3): 103-112.

15. N. den Harder, D. C. M. van den Bekerom, M. F. Graswinckel, J. M. Palomares, F. J. J. Peeters, S. Ponduri, T. Minea, W. A. Bongers, M. C. M. van de Sanden, G. J. van Rooij. Plasma Process // Polym. 2016, this issue.

16. R. I. Azizov, A. K. Vakar, V. K. Zhivotov, M. F. Krotov, OA Zinov’ev, B. V. Potapkin, V. D. Rusanov, A. A. Rusanov, A. A. Fridman // Sov. Phys. Dokl. 1983;28: 567.

17. L. Spencer, A. D. Gallimore. Plasma Chem // Plasma P. 2011;31.1: 79.

18. T. Verreycken, P. M. J. Koelman, D. C. M. van den Bekerom, J. M. Palomares-Linares, S. Ponduri, J. van Dijk, G. J. van Rooij, M. C. M. van de Sanden, W. A. Bongers. Investigation of the effect of onand off time on the dissociation of CO2 in a pulsed microwave discharge, submitted to EPJ AP, 15th High pressure low temperature plasma chemistry symposium, September 11-16, Brno, Czech Republic, 2016.

19. A. K. Vakar, V. K. Givotov, E. G. Krasheninnikov, A. Fridman. Sov. Phys. J. Techn. Phys. Lett. 1981;7: 996.

20. T. S. Batukaev, Yu. A. Lebedev. Carbon Dioxide Reforming of Methane in Atmospheric-Pressure DirectCurrent Glow Discharge // High Energy Chemistry. 10.1134/S0018143925600181, 59, 4, (415-420), (2025).

21. Ursel Fantz, Rodrigo Antunes, Ante Hecimovic, Arne Meindl, Plasmas for the Production of Value-Added Chemicals // Emerging Applications of Ions and Plasmas, 10.1007/978-3-031-84245-0_6, (135-165), (2025).

22. Ran Li, Jing Liu, Jingshan Du, Chaoyue Meng, Cuiping Bian, Chang Liu, Fenglei Han, Research Progress in DBD Plasma-Catalyzed CO2 Conversion // Industrial & Engineering Chemistry Research. 10.1021/acs.iecr.5c00153, 64, 13, (6931-6955), (2025).

23. N. V. Chekmarev, D. A. Mansfeld, E. I. Preobrazhensky, S. V. Sintsov, M. A. Remez, and A. V. Vodopyanov. Suppression of Reverse Reactions during the Decomposition of Carbon Dioxide in Microwave Discharge Plasma // Letters to the Journal of Technical Physics. – 2023. – Vol. 49, Issue 24. – Pp. 31-34.

24. V. Y. Gidaspov, S. A. Losev, N. S. Severina, Nonequilibrium kinetics in oxygen dissociation behind the shock wave front. Modeling. 2009. – Volume 21. – No. 9. – Pp. 3-15.

25. Losev S. A., Generalov N. A., Maksimenko V. A. Investigation of the Decay of Carbon Dioxide Molecules at High Temperatures. Dokl. AN USSR. – 1963. – Vol. 150. – No. 4. – P. 839.

26. S. A. Losev, L. B. Terebenina, Kinetics of carbon dioxide dissociation behind a shock front // Prikl. Mekh. Tekh. Fiz. – 1966. – Volume 7. – Issue 4. – Pp. 133-138.

27. Abaimov N. A., Shurchalin A. A., Shestakov N. S., Osipov P. V., Ryzhkov A. F. Experimental and Numerical Study of Flow-Type Coal Gasification at Increased Pressure and Various Blowing Compositions // Materials of the IX All-Russian Conference with International Participation. Fuel Combustion: Theory, Experiment, and Applications (November 16-18, 2015) / Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk. 2015. Electronic Edition.

28. J. Annaloro1, A. Bultel, P. Omaly. Detailed kinetic of CO2 dissociation and C ionization: application to atmospheric Martian entries // Journal of Physics: Conference Series 511. – 2014.

29. Physical and Chemical Processes in Gas Dynamics. In 2 volumes. Dynamics of Physical and Chemical Processes in Gas and Plasma. – Moscow: Moscow University Press, 1995.

30. Ralnikov, P. A. Numerical Study of the Influence of Carbon Dioxide Dissociation in a Flow Oxygen Gasifier / P. A. Ralnikov, N. A. Abaimov // Proceedings of the Second Scientific and Technical Conference of Young Scientists at the Ural Energy Institute. – Yekaterinburg: Ural Federal University, 2017, pp. 55-58.


Review

For citations:


Kuznetsov A.G., Voronov V.A., Smorodin A.I. Study of low-power plasma-chemical module for carbon dioxide decomposition. Alternative Energy and Ecology (ISJAEE). 2025;(10):83-92. (In Russ.) https://doi.org/10.15518/isjaee.2025.10.083-092

Views: 37

JATS XML

ISSN 1608-8298 (Print)