Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Hydrodeoxygenation of stearic acid over Ni-Mg-Al-O mixed oxide catalysts

https://doi.org/10.15518/isjaee.2025.10.126-140

Abstract

The effect of the Ni/Mg molar ratio on the physicochemical and catalytic properties of mixed Ni-Mg-Al-O oxides obtained by heat treatment of layered double hydroxides has been studied. An increase in the nickel content and the catalyst reduction temperature leads to an increase in the degree of nickel reduction and a decrease in its dispersion due to sintering processes occurring at high temperatures. As the Ni/Mg ratio increases, the stearic acid conversion and the yield of C15-C18 hydrocarbons increase. The complete transformation of stearic acid to heptadecane as the main product is provided by the catalyst with the molar ratio Ni/Mg of 3 at 270 ° C and 4 MPa for 5 hours.

About the Authors

A. A. Nepomniashchii
Center of New Chemical Technologies, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Nepomniashchii Alexander Andreevich, Cand. Sci. in Chemistry, researcher

ResearcherID: D-9944-2019

tel. 67-03-14, fax 64-61-56

644040, Omsk, Neftezavodskaya Str, 54



A. V. Markelova
Center of New Chemical Technologies, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Markelova Alina Vyacheslavovna, engineer

644040, Omsk, Neftezavodskaya Str, 54



L. A. Buluchevskaia
Center of New Chemical Technologies, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Buluchevskaia Lyudmila Anatolyevna, lead engineer

644040, Omsk, Neftezavodskaya Str, 54



A. V. Lavrenov
Center of New Chemical Technologies, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Lavrenov Alexander Valentinovich, Dr. Sci. in Chemistry, Director

ResearcherID: ABE-1691-2022

644040, Omsk, Neftezavodskaya Str, 54



References

1. Biodiesel production and properties. / M. Crocker (Ed.). Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals. RSC Publishing. Cambridge, 2010. – Pр. 382-415.

2. Renewable diesel and jet-fuel production from fats and oils / M. Crocker (Ed.). Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals. RSC Publishing. Cambridge, 2010. – P. 468-495.

3. Donnis, B. Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes / B. Donnis et al. // Top. Catal. – 2009. – Vol. 52. – Pр. 229-240.

4. Xu, D. Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: a critical review / D. Xu et al. // Renew Sust Energ Rev. – 2018. – Vol. 97. – Pр. 103-118.

5. Jin, W. Catalytic conversion of palm oil to bio-hydrogenated diesel over novel N-doped activated carbon supported Pt nanoparticles / W. Jin et al. // Energies. – 2019. – Vol. 13. – No 1. – P. 132.

6. Nikolopoulos, I. Waste cooking oil transformation into third generation green diesel catalyzed by nickel–alumina catalysts / I. Nikolopoulos et al. // Molecular Catalysis. – 2020. – Vol. 482. – P. 110697.

7. Kalnes, T. Green diesel: a second generation biofuel / T. Kalnes, T. Marker, D. R. Shonnard // International Journal of Chemical Reactor Engineering. – 2007. – Vol. 5. – No 1.

8. Pat. 003708, Process for the manufacture of diesel range hydrocarbons / Myllyoja J., Aalto P., Harlin E. World Intellectual Propery Organization; Public. 10.01.2007. – 22 р.

9. Kubicka, D. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts / D. Kubicka, L. Kaluza // Appl Catal A: Gen. – 2010. – Vol. 372. – No 2. – Pр. 199-208.

10. Douvartzides, S. L. Green diesel: biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines / S. L. Douvartzides et al. // Energies. – 2019. – Vol. 12. – No 5. – P. 809.

11. Kimene, A. Catalytic decarboxylation of fatty acids to hydrocarbons over non-noble metal catalysts: the state of the art / A. Kimene et al. // Journal of Chemical Technology & Biotechnology. – 2019. – Vol. 94. – No 3. – Pр. 658-669.

12. Kordulis, C. Development of nickel-based catalysts for the transformation of natural triglycerides and related compounds into green diesel: a critical review / C. Kordulis et al. // Applied Catalysis B: Environmental. – 2016. – Vol. 181. – Pр. 156-196.

13. Cheah, K. Monometallic and bimetallic catalysts based on Pd, Cu and Ni for hydrogen transfer deoxygenation of a prototypical fatty acid to diesel range hydrocarbons / K. Cheah et al. // Catalysis Today. – 2020. – Vol. 355. – Pр. 882-892.

14. Santillan-Jimenez, E. Effect of Cu promotion on cracking and methanation during the Ni-catalyzed deoxygenation of waste lipids and hemp seed oil to fuel-like hydrocarbons / E. Santillan-Jimenez et al. // Catalysis Today. – 2018. – Vol. 302. – Pр. 261-271.

15. Yakovlev, V. A. Development of new catalytic systems for upgraded bio-fuels production from biocrude-oil and biodiesel / V. A. Yakovlev et al. // Catalysis Today. – 2009. – Vol. 144. – No. 3-4. – Pр. 362-366.

16. Liu, Q. One-step hydrodeoxygenation of palm oil to isomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-11 catalysts / Q. Liu et al. // Appl Catal A-Gen. – 2013. – Vol. 8. – Pр. 68-74.

17. Kordulis, C. Development of nickel-based catalysts for the transformation of natural triglycerides and related compounds into green diesel: a critical review / C. Kordulis et al. // Appl Catal B-Environ. – 2016. – Vol. 181. – P. 156-196.

18. Kubickova, I. Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and Petrochemicals: a review. / I. Kubickova, D. Kubicka // Waste Biomass Valori. – 2010. – Vol. 1. –Pр. 293-308.

19. Arun, N. Green Diesel synthesis by hydrodeoxygenation of bio-based feedstocks: strategies for catalyst design and development Renew / N. Arun, R.V. Sharma, A.K. Dalai // Sust Energ Rev. – 2015. – Vol. 48. – Pр. 240-255.

20. Peng, B. Stabilizing catalytic pathways via redundancy: selective reduction of microalgae oil to alkanes / B. Peng et al. // J Am Chem Soc. – 2012. – Vol. 134. – Pр. 9400-9405.

21. Mohanty, U. S. Current advances in syngas (CO+ H2) production through bi-reforming of methane using various catalysts: A review / U.S. Mohanty et al. // International Journal of Hydrogen Energy. – 2021. – Vol. 46. – Pp. 32809-32845.

22. Kumar, N. Advances in Catalysts for Hydrogen Production: A Comprehensive Review of Materials and Mechanisms / N. Kumar et al. // Nanomaterials. – 2025. – Vol. 15. – №. 4. – P. 256.

23. Akhtar, M. S. Metal-Based Catalysts in Biomass Transformation: From Plant Feedstocks to Renewable Fuels and Chemicals / M.S. Akhtar et al. // Catal. – 2025. – Vol. 15. – No. 1. – P. 40.

24. Pat. 103261381A China, C10L 1/00. Production of renewable biofuels. № 2011800615833; appl. 29.12.11; publ. 21.08.13 – 14 p.

25. Pat. 2476484B1 EP, H01M 8/0618. Porous catalytic object for decomposing hydrocarbon and process for producing same, process for producing hydrogen-containing mixed reformed gas from hydrocarbon, and fuel cell system / Takahashi S. – № 10815395.8; appl. 08.09.10; publ. 07.11.18. – 21 p.

26. Pat. 2019084657A1 WIPO (PCT), C10G 3/00. Process for the production of hydrocarbon biofuels / Vedachalam S. – № 2017/051317; appl. 06.11.174; publ. 09.05.19. – 34 p.

27. Pat. 2014510810A Japan, C10B 53/02. Refractory mixed oxide and spinel compositions for thermocatalytic conversion of biomass – № 2013557762; appl. 01.03.12; publ. 01.05.14. – 17 p.

28. Sikander, U. A review of hydrotalcite based catalysts for hydrogen production systems / U. Sikander et al. // International Journal of Hydrogen Energy. – 2017. – Vol. 42. – Pp. 19851-19868.

29. Feng, J. T. Enhanced metal dispersion and hydrodechlorination properties of a Ni/Al2O3 catalyst derived from layered double hydroxides / J. T. Feng et al. // J. Catal. – 2009. – Vol. 266. – Pp. 351-358.

30. Cullity, B. D. Elements of X-Ray Diffraction / B. D. Cullity. – Addision-Wesley, London, 2011.

31. Borowieki, T. / T. Borowieki // Appl. Catal. A: Gen. – 1982. – Vol. 4. – P. 223.

32. Borowieki, T. / T. Borowieki // Appl. Catal. A: Gen. – 1984. – Vol. 4. – P. 273.

33. Broda, M. Sorbent-Enhanced Methane Reforming over a Ni–Ca-Based, Bifunctional Catalyst Sorbent / M. Broda, A.M. Kierzkowska, D. Baudouin, Q. Imtiaz, C. Copéret, C.R. Müller // ACS Catal. – 2012. – Vol. 2. – Pp. 1635-1646.

34. Zhan, Y. Biogas reforming of carbon dioxide to syngas production over Ni-Mg-Al catalysts / Y. Zhan et al. // Mol Catal. – 2017. – Vol. 436. – Pp. 248-258.

35. Zhu, Y. Effect of Mg/Al ratio of NiMgAl mixed oxide catalyst derived from hydrotalcite for carbon dioxide reforming of methane / Y. Zhu et al. // Catal Today. – 2016. – Vol. 264. – Pp. 163-170.

36. Zhang, A. Naphthenic acid removal from crude oil through catalytic decarboxylation on magnesium oxide / A. Zhang // Applied Catalysis A: General. – 2006. – Vol. 303. – Pp. 103-109.

37. Janampelli, S. Metal oxide-promoted hydrodeoxygenation activity of platinum in Pt-MOx/Al2O3 catalysts for green diesel production / S. Janampelli, S. Darbha // Energy & Fuels. – 2018. – Vol. 32. – No 12. – Pp. 12630-12643.

38. Peng, B. Towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts / B. Peng et al. // Angew. Chem. Int. – 2012. – Vol. 51. – No 9. – Pp. 2072-2075.

39. Kumar, P. Kinetics of hydrodeoxygenation of stearic acid using supported nickelcatalysts: Effects of supports / P. Kumar et al. // Appl. Catal. A: Gen. – 2014. – Vol. 471. – Pp. 28-38.

40. Pedroza, M. A. P. Hydrodeoxygenation of stearic acid to produce diesel–like hydrocarbons: kinetic modeling, parameter estimation and simulation / M. A. P. Pedroza et al. // Chem. Eng. Sci. – 2022. – Vol. 254. – P. 117576.

41. Arora, P. Kinetic study of hydrodeoxygenation of stearic acid as model compound for renewable oils / P. Arora et al. // Chem. Eng. J. – 2019. – Vol. 364 – Pp. 376-389.

42. Kumar, P. Role of NiMo Alloy and Ni Species in the Performance of NiMo/Alumina Catalysts for Hydrodeoxygenation of Stearic Acid: A Kinetic Study / P. Kumar et al. // ACS Omega. – 2019. – Vol. 4. – Pp. 2833-2843.

43. Пат. 2715239C2 РФ, МПК C07C 1/24. Способ декарбоксилирующей кетонизации жирных кислот или производных жирной кислоты. – № 2017142547; заявл. 04.05.16; опубл. 26.02.20.

44. Беренблюм, A. C. Влияние природы металла и носителя на эффективность катализаторов деоксигенации жирных кислот в углеводороды / A. C. Беренблюм et al. // Журнал физической химии. – 2012. – Vol. 86. – No 8. – Pp. 1199-1203.


Review

For citations:


Nepomniashchii A.A., Markelova A.V., Buluchevskaia L.A., Lavrenov A.V. Hydrodeoxygenation of stearic acid over Ni-Mg-Al-O mixed oxide catalysts. Alternative Energy and Ecology (ISJAEE). 2025;(10):126-140. (In Russ.) https://doi.org/10.15518/isjaee.2025.10.126-140

Views: 50

JATS XML

ISSN 1608-8298 (Print)