Research and development of combined-cycle power plants operating on methane–hydrogen fuel mixtures with condensing heat-recovery steam generators
https://doi.org/10.15518/isjaee.2025.10.141-169
Abstract
Reducing greenhouse-gas emissions in the production of heat and electricity is one of the key avenues of sustainable development. Transitioning from hydrocarbon fuels to hydrogen will virtually eliminate carbon-dioxide formation in the combustion chambers of gas-turbine units while simultaneously increasing the water-vapor content in the combustion products, which makes recovery of the low-grade heat of water vapor from the flue-gas stream in condensing heat-recovery boilers promising. This study presents the results of a comprehensive analysis of combined-cycle power blocks operating on hydrogen and methane–hydrogen mixtures, with additional recovery of the low-grade heat of wet combustion products in Organic Rankine Cycles. The energy-efficiency level of the units is determined, a RANS-based methodology for modeling heat transfer in condensing heat-recovery steam generators is refined, and the overall dimensions of the heat-recovery system are assessed.
About the Authors
V. O. KindraRussian Federation
Kindra Vladimir Olegovich, Candidate of Technical Sciences, Associate Professor, Department of Innovative Technologies for High-Tech Industries
Researcher ID: C-6347-2014
Scopus ID: 57023993700
111250, Moscow, Krasnokazarmennaya str., 14, build. 1
I. A. Maksimov
Russian Federation
Maksimov Igor Aleksandrovich, Senior Lecturer, Department of Innovative Technologies for High-Tech Industries
Researcher ID: GSD-9808-2022
Scopus ID: 57904246500
111250, Moscow, Krasnokazarmennaya str., 14, build. 1
P. A. Bryzgunov
Russian Federation
Bryzgunov Pavel Aleksandrovich, Candidate of Technical Sciences, Associate Professor, Department of Innovative Technologies for High-Tech Industries
Researcher ID: LPQ-6956-2024
Scopus ID: 57844836600
111250, Moscow, Krasnokazarmennaya str., 14, build. 1
M. A. Ostrovsky
Russian Federation
Ostrovsky Mikhail Andreevich, post-graduate student, Assistant Lecturer, Department of Innovative Technologies for High-Tech Industries
Researcher ID: OOK-6198-2025
Scopus ID: 57802572900
111250, Moscow, Krasnokazarmennaya str., 14, build. 1
N. D. Rogalev
Russian Federation
Rogalev Nikolay Dmitrievich, Doctor of Technical Sciences, Professor, rector
Researcher ID: AAE-7314-2022
Scopus ID: 6507029432
111250, Moscow, Krasnokazarmennaya str., 14, build. 1
References
1. Cecere D., Giacomazzi E., Di Nardo A., Calchetti G. Gas Turbine Combustion Technologies for Hydrogen Blends: 19 // Energies. Multidisciplinary Digital Publishing Institute. – 2023. – № 19. – V. 16. – P. 6829.
2. Pashchenko D. Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission // Renewable and Sustainable Energy Reviews. – 2023. – V. 173. – P. 113117.
3. Chiesa P., Lozza G., Mazzocchi L. Using Hydrogen as Gas Turbine Fuel // J. Eng. Gas Turbines Power. – 2005. – № 1. – V. 127. – Pp. 73-80.
4. SGT5-9000HL Heavy-duty gas turbine (50 Hz) [Electronic resource]. URL: https://www.siemens-energy.com/global/en/home/products-services/product/sgt5-9000hl.html (Date of request: 30.07.2025).
5. 9HA Gas Turbine | 9HA.01 and 9HA.02 | GE Vernova [Electronic resource] // gepower-v2. URL: https://www.gevernova.com/gas-power/products/gas-turbines/9ha (Date of request: 07.10.2025).
6. Karim G. A., Wierzba I., Al-Alousi Y. Methane-hydrogen mixtures as fuels // International Journal of Hydrogen Energy. – 1996. – V. 21. – № 7. – Pp. 625-631.
7. Makaryan I. A., Sedov I. V., Salgansky E. A., Arutyunov A. V., Arutyunov V. S. A Comprehensive Review on the Prospects of Using Hydrogen-Methane Blends: Challenges and Opportunities: 6 // Energies. Multidisciplinary Digital Publishing Institute. – 2022. – № 6. – V. 15. – P. 2265.
8. Kuczyński S., Łaciak M., Olijnyk A., Szurlej A., Włodek T. Thermodynamic and Technical Issues of Hydrogen and Methane-Hydrogen Mixtures Pipeline Transmission // Energies. Multidisciplinary Digital Publishing Institute. – 2019. – № 3. – V. 12.– P. 569.
9. Komarov I., Osi̇Pov S., Zlyvko O., Vegera A., Naumov V. Combined cycle gas turbine for combined heat and power production with energy storage by steam methane reforming // Journal of Energy Systems. – 2021. – № 3. – V. 5.– Pp. 231-243.
10. Bui M., Sunny N., Dowell N. M. The prospects of flexible natural gas-fired CCGT within a green taxonomy // iScience. Elsevier. – 2023. – № 8. – V. 26.
11. Bachu S. CO2 storage in geological media: Role, means, status and barriers to deployment // Progress in Energy and Combustion Science. – 2008. – № 2. – V. 34. – Pp. 254-273.
12. Kelemen P., Benson S. M., Pilorgé H., Psarras P., Wilcox J. An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations // Front. Clim. Frontiers. – 2019. – V. 1.
13. Maksimov I., Kindra V., Vegera A., Rogalev A., Rogalev N. Thermodynamic Analysis and Optimization of Power Cycles for Waste Heat Recovery: 24 // Energies. Multidisciplinary Digital Publishing Institute. – 2024. – № 24. – V. 17. – P. 6375.
14. Kindra V., Maksimov I., Komarov I., Xu C., Xin T. Feasibility Study of Scheme and Regenerator Parameters for Trinary Power Cycles: 9 // Energies. Multidisciplinary Digital Publishing Institute. – 2023. – № 9. – V. 16. – P. 3886.
15. Global Hydrogen Review 2025 – Analysis [Electronic resource] // IEA. – 2025. URL: https://www.iea.org/reports/global-hydrogen-review-2025 (Date of request: 13.10.2025).
16. U. S. National Hydrogen Strategy and Roadmap | Hydrogen Program [Electronic resource]. URL: https://www.hydrogen.energy.gov/library/roadmaps-vision/clean-hydrogen-strategy-roadmap (Date of request: 13.10.2025).
17. Hydrogen [Electronic resource]. URL: https://energy.ec.europa.eu/topics/eus-energy-system/hydrogen_en (Date of request: 13.10.2025).
18. ISO/TC 197 – Hydrogen technologies [Electronic resource] // ISO. URL: https://www.iso.org/committee/54560.html (Date of request: 14.10.2025).
19. Öberg S., Odenberger M., Johnsson F. Exploring the competitiveness of hydrogen-fueled gas turbines in future energy systems // International Journal of Hydrogen Energy. – 2022. – № 1. – V. 47. – Pp. 624-644.
20. Öberg S., Odenberger M., Johnsson F. The value of flexible fuel mixing in hydrogen-fueled gas turbines – A techno-economic study // International Journal of Hydrogen Energy. – 2022. – № 74. – V. 47. – Pp. 31684-31702.
21. Dominguez-Gonzalez G., Muñoz-Hernandez J. I., Bunn D., Garcia-Checa C. J. Integration of Hydrogen and Synthetic Natural Gas within Legacy Power Generation Facilities // Energies. Multidisciplinary Digital Publishing Institute. – 2022. – № 12. – V. 15. – P. 4485.
22. Rigaud J., De Paepe W., Laget H. Thermodynamic Assessment of the Conversion of a Typical CCGT Power Plant to a Fully E-Fuel Fired Unit // J. Eng. Gas Turbines Power. – 2022. – № 121012. – V. 144.
23. Krempus D., Bahamonde S., van der Stelt T. P., Klink W., Colonna P., De Servi C. M. On mixtures as working fluids of air-cooled ORC bottoming power plants of gas turbines // Applied Thermal Engineering. – 2024. – V. 236. – P. 121730.
24. Gogoi T. K., Lahon D., Nondy J. Energy, exergy and exergoeconomic (3E) analyses of an organic Rankine cycle integrated combined cycle power plant // Thermal Science and Engineering Progress. – 2023. – V. 41. – P. 101849.
25. Reshaeel M., Javed A., Jamil A., Ali M., Mahmood M., Waqas A. Multiparametric optimization of a reheated organic Rankine cycle for waste heat recovery based repowering of a degraded combined cycle gas turbine power plant // Energy Conversion and Management. – 2022. – V. 254. – P. 115237.
26. Chandio M. W., Kumar L., Memon A. G., Awad M. M. Thermodynamic, economic, and environmental evaluation of internal combustion engine exhaust gas-driven Organic Rankine cycles for power generation and desalination // International Journal of Thermofluids. – 2025. – V. 25. – P. 101046.
27. Bălănescu D. -T., Homutescu V. -M. Performance analysis of a gas turbine combined cycle power plant with waste heat recovery in Organic Rankine Cycle // Procedia Manufacturing. – 2019. – V. 32. – Pp. 520-528.
28. Amini A., Mirkhani N., Pakjesm Pourfard P., Ashjaee M., Khodkar M. A. Thermo-economic optimization of low-grade waste heat recovery in Yazd combined-cycle power plant (Iran) by a CO2 transcritical Rankine cycle // Energy. – 2015. – V. 86. – Pp. 74-84.
29. Khan Y., Mishra R.S. Thermodynamic (energy-exergy) analysis of combined cycle power plant for improving thermal energetic and exergetic efficiencies by integration of organic Rankine cycle (ORC). – 2018.
30. Pashchenko D., Mustafin R., Karpilov I. Efficiency of chemically recuperated gas turbine fired with methane: Effect of operating parameters // Applied Thermal Engineering. – 2022. – V. 212. – P. 118578.
31. Pashchenko D., Mustafin R., Karpilov I. Thermochemical recuperation by steam methane reforming as an efficient alternative to steam injection in the gas turbines // Energy. – 2022. – V. 258. – P. 124913.
32. Carapellucci R., Giordano L. Upgrading existing gas-steam combined cycle power plants through steam injection and methane steam reforming // Energy. – 2019. – V. 173. – Pp. 229-243.
33. Mullen D. T. Net zero electricity and hydrogen production with post-combustion CO2 capture and storage. The University of Edinburgh. – 2025.
34. Andersen P. Ø., Brattekås B., Zhou Y., Nadeau P., Nermoen A., Yu Z., Fjelde I., Oelkers E. Carbon capture utilization and storage (CCUS) in tight gas and oil reservoirs // Journal of Natural Gas Science and Engineering. – 2020. – V. 81. – P. 103458.
35. Liang B., Chen C., Jia C., Wang C., Wang X., Zha Y., Wang R., Meng Z., Wang H. Carbon capture, utilization and storage (CCUS) in oil and gas reservoirs in China: Status, opportunities and challenges // Fuel. – 2024. – V. 375. – P. 132353.
36. Bao X., Fragoso A., Aguilera R. Simultaneous enhanced oil recovery, CCUS and UHUS in shale oil reservoirs // International Journal of Coal Geology. – 2023. – V. 275. – P. 104301.
37. Bashir A., Ali M., Patil S., Aljawad M. S., Mahmoud M., Al-Shehri D., Hoteit H., Kamal M. S. Comprehensive review of CO2 geological storage: Exploring principles, mechanisms, and prospects // Earth-Science Reviews. – 2024. – V. 249. – P. 104672.
38. Michael K., Golab A., Shulakova V., Ennis-King J., Allinson G., Sharma S., Aiken T. Geological storage of CO2 in saline aquifers – A review of the experience from existing storage operations // International Journal of Greenhouse Gas Control. – 2010. – № 4. – V. 4. – Pp. 659-667.
39. Aydin G., Karakurt I., Aydiner K. Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety // Energy Policy. – 2010. – № 9. – V. 38. – Pp. 5072-5080.
40. Li W., Zhao J., Fu L., Yuan W., Zheng Z., Li Y. Energy efficiency analysis of condensed waste heat recovery ways in cogeneration plant // Energy Conversion and Management. – 2015. – V. 101. – Pp. 616-625.
41. Chen Q., Finney K., Li H., Zhang X., Zhou J., Sharifi V., Swithenbank J. Condensing boiler applications in the process industry // Applied Energy. – 2012. – № 1. – V. 89. – Pp. 30-36.
42. Vannoni A., Giugno A., Sorce A. Integration of a flue gas condensing heat pump within a combined cycle: Thermodynamic, environmental and market assessment // Applied Thermal Engineering. – 2021. – V. 184. – P. 116276.
43. Maalouf S., Boulawz Ksayer E., Clodic D. Investigation of direct contact condensation for wet fluegas waste heat recovery using Organic Rankine Cycle // Energy Conversion and Management. – 2016. – V. 107. – Pp. 96-102.
44. Li Y., Yan M., Zhang L., Chen G., Cui L., Song Z., Chang J., Ma C. Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery // Applied Energy. – 2016. – V. 172. – Pp. 107-117.
45. Thekdi A., Nimbalkar S. U., Sundaramoorthy S., Armstrong K. O., Taylor A., Gritton J. E., Wenning T., Cresko J. Technology Assessment on Low-Temperature Waste Heat Recovery in Industry: ORNL/TM-2021/2150. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). – 2021.
46. Zhang W., Wang S., Mu L. Condensation heat transfer characteristics of flue gas on anti-corrosive coated finned tubes // Applied Thermal Engineering. – 2021. – V. 189. – P. 116672.
47. Terhan M., Comakli K. Design and economic analysis of a flue gas condenser to recover latent heat from exhaust flue gas // Applied Thermal Engineering. – 2016. – V. 100. – Pp. 1007-1015.
48. Lebedev A. S., Pavlov A. Yu., Richter F., Adamchuk A. A. Experience gained from operation of the GTE-160 gas turbine installation and prospects for its modernization // Therm. Eng. – 2013. – № 2. – V. 60. – Pp. 89-91.
49. Kindra V. O., Naumov V. Y., Kovalev D. S. Air-cooled gas turbine model. – № 2. – V. 21.
50. Trukhniy, A. D. Combined-Cycle Power Plants: Textbook for Universities. Moscow: MEI Publishing House. – 2017. – 675 p.
51. Taniguchi H., Kudo K., Hwang Q.-R., Fujii A. Heat and Mass Transfer from Air with HIgh Water Vapor Content (Latent Heat Recovery from Flue Gas) // JSME international journal. Ser. 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties. – 1988. – № 2. – V. 31. – Pp. 299-305.
52. Osakabe M., Ishida K., Yagi K., Itoh T., Ohmasa K. Condensation heat transfer on tubes in actual flue gas // Heat Trans. Asian Res. – 2001. – № 2. – V. 30. – Pp. 139-151.
53. Osakabe M., Itoh T., Yagi K. Condensation heat transfer of actual flue gas on horizontal tubes // Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference. – 1999. – Pp. 1-8.
Review
For citations:
Kindra V.O., Maksimov I.A., Bryzgunov P.A., Ostrovsky M.A., Rogalev N.D. Research and development of combined-cycle power plants operating on methane–hydrogen fuel mixtures with condensing heat-recovery steam generators. Alternative Energy and Ecology (ISJAEE). 2025;(10):141-169. (In Russ.) https://doi.org/10.15518/isjaee.2025.10.141-169
JATS XML































