

REDUCED GRAPHITE OXIDE COMPOSITES WITH NICKEL NANOPARTICLES
https://doi.org/10.15518/isjaee.2016.03-04.004
Abstract
The results of studies of the formation of nickel-based composites of reduced graphite oxide by various methods are presented. It is shown that the particle size of the Ni and the uniformity of their distribution are strongly dependent on the method of preparation of the composite. The developed method allows the creation of composites, containing Ni nanoparticles ranging in size from 8 to 15 nm, which are uniformly distributed on the surface of reduced graphite oxide.
About the Authors
A. A. ArbuzovRussian Federation
Ph.D. (chemistry), researcher of Institute of Problems of Chemical Physics of RAS.
S. A. Mozhzhukhin
Russian Federation
graduate student of Ivanovo State University, engineer of Institute of Problems of Chemical Physics of RAS.
V. B. Son
Russian Federation
graduate student, research engineer of Institute of Problems of Chemical Physics of RAS.
B. P. Tarasov
Russian Federation
Ph.D. (chemistry), Head of Laboratory of Institute of Problems of Chemical Physics of RAS.
References
1. Tarasov B.P., Goldshleger N.F. Sorbciâ vodoroda uglerodnymi nanostrukturami. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2002, no. 3, pp. 20–38 (in Russ.).
2. Tarasov B.P., Maehlen J.P., Lototsky M.V., Muradyan V.E., Yartys V.A. Hydrogen sorption properties of arc generated single-wall carbon nanotubes. Journal of Alloys and Compounds, 2003, vol. 356–357, pp. 510– 514 (in Eng.).
3. Tarasov B.P., Muradyan V.E., Volodin A.A. Sin-tez, svojstva i primery ispolʹzovaniâ uglerodnyh nanomaterialov. Izvestiâ AN, Ceriâ himičeskaâ, 2011, no. 7, pp. 1237–1249 (in Russ.).
4. Lukashev R.V., Klyamkin S.N., Tarasov B.P. Polučenie i svojstva vodorod-akkumuliruûŝih kompozitov v sisteme MgH2–C. Neorganičeskie materialy, 2006, vol. 42, no. 7, pp. 803–810 (in Russ.).
5. Tarasov B.P. Metal-hydride accumulators and generators of hydrogen for feeding fuel cells. International Journal of Hydrogen Energy, 2011, vol. 36, no. 1, pp. 1196–1199 (in Eng.).
6. Volodin A.A., Gerasimova E.V., Tarasov B.P. Èlektrody na osnove Pt i uglerodnyh nanovolokon. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2009, no. 1, pp. 140–143 (in Russ.).
7. Gerasimova E.V., Tarasov B.P. Platina na uglerodnyh nositelâh – katalizator processov v nizkotemperaturnyh toplivnyh èlementah. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2009, no. 8, pp. 25–37 (in Russ.).
8. Kusch S.D., Kuyunko N.S., Tarasov B.P. Prigotovlenie katalizatorov gidrirovaniâ na osnove nanočastic pla-tiny, nanesennyh na uglerodnye nanomaterialy. Kinetika i kataliz, 2009, vol. 50, no. 6, pp. 895–898 (in Russ.).
9. Kusch S.D., Kuyunko N.S., Muradyan V.E., Korshunova L.A., Dremova N.N., Tarasov B.P. Nanočasticy platiny, zakreplennye na vosstanovlennom okside grafita, kak katalizatory gidrirovaniâ. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2012, no. 8, pp. 71–76 (in Russ.).
10. Kusch S.D., Kuyunko N.S., Muradyan V.E., Tarasov B.P. Polučenie katalizatorov gidrirovaniâ sovmestnym vosstanovleniem oksida grafita i platiny (IV). Žurnal fizičeskoj himii, 2013, vol. 87, no. 11, pp. 1824– 1830 (in Russ.).
11. Neto A.H.C., Guinea F., Peres N.M.R., et al. The electronic properties of graphene. Reviews of Modern Physics, 2009, vol. 81, pp. 109–162 (in Russ.).
12. Wang D.W., Li F., Wu Z.S., et al. Electrochemical interfacial capacitance in multilayer graphenesheets: De-pendence on number of stacking layers. Electrochemistry Communications, 2009, vol. 11, pp. 1729–1732 (in Russ.).
13. Balandin A.A., Ghosh S., Bao W., et al. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, vol. l8, pp. 902–907 (in Eng.).
14. Navalon S., Dhakshinamoorthy A., Alvaro M., Garcia H. Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 2016 (in print) (in Eng.).
15. Julkapli N.M., Bagheri S. Graphene supported heterogeneous catalysts: An overview. International Journal of Hydrogen Energy, 2015, vol. 40, pp. 948–979 (in Eng.).
16. Soo L.T., Loh K.Sh., Mohamad A.B., et al. An overview of the electrochemical performance of modified gra-phene used as an electrocatalyst and as a catalyst support in fuel cells. Applied Catalysis A: General, 2015, vol. 497, pp. 198–210 (in Eng.).
17. Li Q., Mahmood N., Zhu J., Hou Y., Sun Sh. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today, 2014, vol. 9. pp. 668–683 (in Eng.).
18. Antolini E. Graphene as a new carbon support for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2012, vol.123–124, pp. 52–68 (in Eng.).
19. Tan Ch., Huang X., Zhang H. Synthesis and applications of graphene-based noble metal nanostructures. Materials Today, 2013, vol.16, pp. 29–36 (in Eng.).
20. Bai H., Li Ch., Shi G. Functional composite materials based on chemically converted graphene. Advanced Materials, 2011, vol. 23, pp. 1089–1115 (in Eng.).
21. Tjong S.Ch. Recent progress in the development and properties of novel metal matrix nanocomposites rein-forced with carbon nanotubes and graphene nano-sheets. Materials Science and Engineering R, 2013, vol. 74, pp. 281–350 (in Eng.).
22. Liu X., Han Y., Evans J.W., et al. Growth morphology and properties of metals on graphene. Progress in Surface Science, 2015, vol. 90, pp. 397–443 (in Eng.).
23. Albero J., Garcia H. Doped graphenes in catalysis. Journal of Molecular Catalysis A: Chemical, 2015, vol. 408, pp. 296–309 (in Eng.).
24. Kusch S.D., Kuyunko N.S., Arbuzov A.A., Bondarenko G.V. Prigotovlenie soderžaŝih platinu katalizatorov gidrirovaniâ na termičeski vosstanovlennom ok-side grafita kak nositele. Kinetika i kataliz, 2015, vol. 56, no. 6, pp. 808–815 (in Russ.).
25. Arbuzov A.A., Klyuev M.V., Kalmykov P.A., Tarasov B.P., Magdalinova N.A., Muradyan V.E. Palladijsoderžaŝij katalizator gidrirovaniâ i sposob ego polučeniâ. Patent 2551673 RF MKI C1. Bul. 2015, no. 15 (in Russ.).
26. Mozhzhuhin S.A., Arbuzov A.A., Tarasov B.P. Vliânie dobavok vosstanovlennogo oksida grafita i nikelâ na process obratimogo gidrirovaniâ magniâ. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015, no. 23, pp. 33–36 (in Russ.).
27. Akhavan O. The effect of heat treatment on formation of graphene thin films from graphene oxide na-no-sheets. Carbon, 2010, vol. 48, pp. 509–519 (in Eng.).
28. Arbuzov A.A., Muradyan V.E., Tarasov B.P., Sokolov E.A., Babenko S.D. Èpoksidnye kompozity s termičeski vosstanovlennym oksidom grafita i ih svojstva. Žurnal fizičeskoj himii, 2016, vol. 90, no. 5, pp. 665–669 (in Russ.).
29. Kim S.R., Parvez M.K., Chhowalla M. UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chemical Physics Letters, 2009, vol. 483, pp. 124–127 (in Eng.).
30. Smirnov V.A., Arbuzov A.A., Shulga Yu.M. et al. Fotovosstanovlenie oksida grafita. Himiâ vysokih ènergij, 2011, vol. 45, no. 1, pp. 60–64 (in Russ.).
31. Stankovich S., Dikin D. A., Piner R.D., et al. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, vol. 45, pp. 1558–1565 (in Eng.).
32. Arbuzov A.A., Muradyan V.E., Tarasov B.P. Sin-tez grafenopodobnyh materialov vosstanovleniem oksida grafita. Izvestiâ AN, Seriâ himičeskaâ, 2013, no. 9, pp. 1962–1966 (in Russ.).
33. Wang H., Robinson J.T., Diankov G., et al. Nanocrystal growth on graphene with various degrees of oxidation. Journal of American Chemical Society, 2010, vol. 132, pp. 3270–3271 (in Eng.).
34. Muradyan V.E., Romanova V.S., Moravsky A.P. et al. Nikelʹsoderžaŝij katalizator vosstanovitelʹ-nogo dehlorirovaniâ polihloraromatičeskih uglevodorodov na osnove oksida grafita. Izvestiâ AN, Seriâ himičeskaâ, 2000, no. 6, pp. 1023–1025 (in Russ.).
Review
For citations:
Arbuzov A.A., Mozhzhukhin S.A., Son V.B., Tarasov B.P. REDUCED GRAPHITE OXIDE COMPOSITES WITH NICKEL NANOPARTICLES. Alternative Energy and Ecology (ISJAEE). 2016;(3-4):50-60. (In Russ.) https://doi.org/10.15518/isjaee.2016.03-04.004