

ANALISYS OF ADVANCED CASCADE CONNECTION SCHEMES OF FOUR-FLOW SEPARATING ELEMENTS WITH THREE WITHDRAWALS
https://doi.org/10.15518/isjaee.2015.23.003
Abstract
In the paper, the investigation of new advanced cascades of four-flow separating elements with three withdrawals has been presented. The numerical calculation of main parameters of different cascade schemes of such separating elements has been carried out. The efficiency analysis of a work of considered cascade schemes has been made based on obtained data about the distribution of matter flow and the distribution of component concentrations of a work mixture in each point of cascade. The biggest performance coefficient η has the counter-current symmetric connection scheme with extended zones of additional depletion. It has been demonstrated that the performance coefficient for this scheme does depend neither on a number of separating elements in cascade nor on characteristics of separating process. The permanence of coefficient η allows us to evaluate a size of the cascade for given external parameters, what has a practical reason under planning of energy level consumption of a future separation plant.
About the Authors
V. M. GadelshinRussian Federation
engineer-physicist
O. E. Aleksandrov
Russian Federation
PhD (physics and mathematics), Associate Professor
V. D. Seleznev
Russian Federation
DSc (physics and mathematics), professor
References
1. Bohan P.A., Buchanov V.V., Zakrevskij D.È., Kazaryan M.A., Kalugin M.M., Prohorov A.M., Fateev N.V. Lazernoe razdelenie izotopov v atomarnyh parah. Moscow: FIZMATLIT Publ., 2004 (in Russ.).
2. Villani S. Obogaŝenie urana. Moscow: Ènergoatomizdat Publ., 1983 (in Russ.).
3. De La Garza, Garrett G.A., Murphy J.E. Multicomponent Isotope Separation in Cascades. Chem. Eng. Sci., 1961, vol. 15, pp. 188–209 (in Eng.).
4. Rutherford W.M. A Generalized Computer Model of the Transient Behavior of Multicom-ponent Isotope Separation Cascades. Separation Science and Technology, 1981, no. 16 (10), pp. 1321–1337 (in Eng.).
5. Aleksandrov O.E. Postroenie trehkomponentnogo razdelitelʹnogo kaskada. Perspektivnye materialy. Special issue, 2011, no. 10, pp. 61–64 (in Russ.).
6. Gadelshin V.M., Shulgin B.V., Palkin V.A. Sposob razdeleniâ izotopov. Patent B01D 59/00 no. 2500461 RF // 2013, Bul. no. 34 (in Russ.).
7. Cohen K. The Theory of Isotope Separation as Applied to the Large-Scale Production of U-235 / Ed. G.M. Murphy, First Edition. McGraw-Hill Book Company, Inc., New York, 1951 (in Eng.).
8. Benedict M., Pigford T.H., Levi H.W. Nuclear chemical engineering, 2th ed. McGraw-Hill Book Company, 1981 (in Eng.).
9. Herbst R.S., McCandless F.P. No-Mix and Ideal Separation Cascades. Separation Science and Technology, 1999, no. 34 (3), pp. 343–357 (in Eng.).
10. Gadelshin V.M., Aleksandrov O.E., Shulgin B.V. Razrabotka kvaziidealʹnogo kaskada razdelitelʹnyh èlementov s tremâ otborami. Perspektivnye materialy, Special issue, 2013, no. 14, pp. 65–70 (in Russ.).
11. Palkin V.A., Gadelshin V.M., Aleksandrov O.E., Seleznev V.D. Mnogokomponentnyj razdelitelʹnyj potencial. Obobŝenie teorii Diraka. Inženerno-fizičeskij žurnal, 2014, no. 87 (3), pp. 501–508 (in Russ.).
Review
For citations:
Gadelshin V.M., Aleksandrov O.E., Seleznev V.D. ANALISYS OF ADVANCED CASCADE CONNECTION SCHEMES OF FOUR-FLOW SEPARATING ELEMENTS WITH THREE WITHDRAWALS. Alternative Energy and Ecology (ISJAEE). 2015;(23):26-34. (In Russ.) https://doi.org/10.15518/isjaee.2015.23.003