Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

ANALYSIS OF COVALENT BONDS MULTIPLICITY DEPENDENCE ON CRYSTAL STRUCTURES OF NANO-SCALE PHASES OF ALLOTROPIC CARBON, RELEVANCE TO THE CLEAN ENERGY AND SOME OTHER APPLICATIONS

https://doi.org/10.15518/isjaee.2016.01-02.004

Abstract

The approach based on the atomic radial distribution functions (RDF) theoretical building for volume, surface, and linear atomic structures was developed, accounting the escape depth of the analyzed signal, for interpretation of electron energy loses fine structure spectroscopy (EELFS) data. Basing on the made experiments and the theoretical investigations, the covalent bonds multiplicity values were determined for two carbine modifications formed on the different metal substrates with the different methods.

About the Authors

V. P. Filippova
I.P.Bardin Central Research Institute for Ferrous Metallurgy 23/9-2 Radio str., Moscow, 105005 Russia
Russian Federation

Ph.D., Leading scientist



Yu. S. Nechaev
I.P.Bardin Central Research Institute for Ferrous Metallurgy 23/9-2 Radio str., Moscow, 105005 Russia
Russian Federation

professor, D.Sc., Chief researcher



References

1. Kovalev A.I., Mishina V.P. (Filippova V.P.), Stsherbedinsky G.V., Wainstein D.L. EELFS method for investigation of equilibrium segregations on surfaces in steels and alloys. Vacuum, 1990, vol. 41, no. 7–9, pp. 1794–1795.

2. Wainstein D.L., Kovalev A.I. Fine determination of interatomic distances on surface using extended energy-loss fine structure (EELFS) data: peculiarities of the technique. SurFace and InterFace Analysis, 2002, vol. 34, pp. 230–233.

3. Glatter O., Kratky O. Small-Angle X-ray Scatterinbg. Academic Press Inc. (London) Ltd, 1982, 515 p.

4. Wainstein B.K. Diffraction of X-rays on molecule chains. Publishing House the Academy of Science of the USSR (Moscow), 1963, 372 pp. (in Russ.).

5. Svergun D.I., Feygin L.A. X-ray and neutron Small-Angle Scattering. Nauka Publ. (Moscow), 1986, 279 p. (in Russ.)

6. Emsley J. The Elements. Clarendon Press (Oxford), 1991, 256 p. (ISBN 0-19-855568-7).

7. Penkala T. Progress in crystal chemistry. Publishing House “Chemistry” (Leningrad, USSR), 1974, 496 p. (in Russian translated from Polish, 1972).

8. Pearson W.B. The Crystal Chemistry and Physics of Metals and Alloys. Willey-Iterscience (New York), 1972, vol. 1, 419 p.; vol. 2, 471p.

9. Eletskiy A.V., Smirnov B.M. Fullerenes and Carbon Structures. Physics-Uspehi, 1995, vol. 165, no. 9, pp. 977–1009 (in Russ.)

10. Sladkov A.M., Kudriavtcev Yu.P. Diamond, graphite, carbine – allotropic forms of carbon. Priroda, 1969, no. 5, pp. 37–44 (in Russ., ISBN: 978-5-458-66294-9).

11. Nechaev Yu.S. and T. Nejat Veziroglu. Thermodynamic aspects of the stability of the graphene/graphane/hydrogen systems, relevance to the hydrogen on-board storage problem. Advances in Materials Physics and Chemistry, 2013, vol. 3, pp. 255–280.

12. Gijzeman O.L.J. Surface composition of binary metal alloys; Applicability of bulk parameters to surfaces. SurFace Sci., 1985, vol. 150, no. 1, pp.1–13.

13. Seach M.P., Briggs D. Practical Surface Analysis de Auger and X-Ray Phitoelectron spectroscopy: Edited by D. Briggs and M.P. Seach. John Wiley & Sons Ltd (London, New-York), 1983, 800 p.


Review

For citations:


Filippova V.P., Nechaev Yu.S. ANALYSIS OF COVALENT BONDS MULTIPLICITY DEPENDENCE ON CRYSTAL STRUCTURES OF NANO-SCALE PHASES OF ALLOTROPIC CARBON, RELEVANCE TO THE CLEAN ENERGY AND SOME OTHER APPLICATIONS. Alternative Energy and Ecology (ISJAEE). 2016;(1-2):43-49. (In Russ.) https://doi.org/10.15518/isjaee.2016.01-02.004

Views: 522


ISSN 1608-8298 (Print)