Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

RESEARCH OF PROPERTIES OF THE POLYPROPYLENE TRACK MEMBRANES WITH A THIN POLYMER LAYER OBTAINED BY THE METHOD OF ELECTRON BEAM DISPERSION OF POLYTETRAFLUOROETHYLENE IN VACUUM

https://doi.org/10.15518/isjaee.2015.23.015

Abstract

The surface, structure and electrochemical properties of a polypropylene track membranes with a polymer layer obtained by electron beam dispersion of polytetrafluoroethylene in vacuum has been studied. It has been found that the deposition of the polytetrafluoroethylene layer on the surface leads to the creation of composite membranes that exhibit in electrolyte solutions conductance asymmetry, the rectification effect similar to the pn junction in semiconductors. It is shown that the observed effect of conductivity asymmetry is caused by a significant decrease in the diameter of pores in the deposited polymer layer and a change in the pore geometry, same as existence of an interface between the initial membrane and polytetrafluoroethylene layer.

About the Authors

A. A. Dyussembekova
National Research Tomsk Polytechnic University Physical and Technical Institute 30 Lenin ave., Tomsk, 634050 Russia
Russian Federation

MSc



V. V. Sokhoreva
National Research Tomsk Polytechnic University Physical and Technical Institute 30 Lenin ave., Tomsk, 634050 Russia
Russian Federation

senior researcher



L. I. Kravets
Joint Institute for Nuclear Research Flerov Laboratory of Nuclear Reactions 6 Joliot-Curie ave., Dubna, 141980 Russia
Russian Federation

PhD (engineering), Senior Researcher



References

1. Saleh O.A., Sohn L.L. Quantitative sensing of nanoscale colloids using a microchip Coulter counter. Rev. Sci. Instrum., 2001, vol. 72, pp. 4449–4451 (in Eng.).

2. Han C., Jonas O.T., Robert H.A., Stephen Y.C. Gradient nanostructures for interfacing mi-crofluidics and nanofluidics. Applied Physics Letters, 2002, vol. 81, pp. 3058–3060 (in Eng.).

3. Cervera J., Schiedt B., Neumann R., Mafe S., Ramirez P. Ionic conduction, rectification, and selectivity in single conical nanopores. J. Chem. Phys., 2006, vol. 124, no. 104706 (in Eng.).

4. Karnik R., Fan R., Yue M., Li D.Y., Yang P.D., Majumdar A. Electrostatic control of ions and molecules in nanofluidic transistors. NanoLetters, 2005, vol. 5, pp. 943–948 (in Eng.).

5. Vlassiouk I., Siwy Z.S. Nanofluidic diode. Nano-Letters, 2007, vol. 7, pp. 552–556 (in Eng.).

6. Apel P.Yu., Dmitriev S.N. Micro- and nanoporous materials produced using accelerated heavy ion beams. Advances in Natural Sciences [ Nanoscience and Nanotechnology, 2011, vol. 2., no. 013002 (in Eng.).

7. Siwy Z., Apel P., Baur D., Dobrev D., Korchev Yu., Neumann R., Spohr R., Trautmann C., Voss K. Ion transport through asymmetric nanopores prepared by ion track etching. Surface Science, 2003, vol. 532, pp. 1061– 1066 (in Eng.).

8. Kravets L.I., Dmitriev S.N., Satulu V., Mitu B., Dinescu G. Fabrication and electrochemical properties of polymer bilayered membranes. Surf. Coat. Technol., 2011, vol. 205, suppl. 2, pp. S455–S461 (in Eng.).

9. Kravets L., Dmitriev S., Lizunov N., Satulu V., Mitu B., Dinescu G. Properties of poly(ethylene terephthalate) track membranes with a polymer layer obtained by plasma polymeri-zation of pyrrole vapors. Nucl. Instr. and Meth. B, 2010, vol. 268, no. 5, pp. 485–492 (in Eng.).

10. Kravets L., Dmitriev S., Dinescu G., Satulu V., Gilman A., Yablokov M. Polymer compo-site nanomembranes with asymmetry of conductivity. Materials Science Forum, 2010, vol. 636–637, pp. 812–818 (in Eng.).

11. Kravec L.I., Dmitriev S.N., Apelʹ P.Yu. Polučenie i svojstva polipropilenovyh trekovyh mem-bran. Himiâ vysokih ènergij, 1997, vol. 31, no. 2, pp. 108–113 (in Russ.).

12. Egorov A.I., Kazachenko V.P., Rogachev A.V., Yablokov M.Yu. Dinamika načalʹnyh sta-dij formirovaniâ pokrytij iz politetraftorètilena i ih svojstva. Žurn. fizič. him., 2002, vol. 76, no. 11, pp. 2085–2089 (in Russ.).

13. Ovchinnikov V.V., Seleznev V. D. Avtomatičeskij gazodinamičeskij kontrolʹ diametra por âdernyh membran s ispolʹzovaniem mikro-ÈVM. Izmerit. tehnika, 1989, no. 3, pp. 12–13 (in Russ.).

14. Mulder M. Vvedenie v membrannuû tehnologiû. Moscow: Mir Publ., 1999 (in Russ.).

15. Lukomskij Yu.Ya., Gamburg Yu.D. Fizikohimičeskie osnovy èlektrohimii. Dolgoprudnyj: Intellekt Publ., 2008 (in Russ.).

16. Stojnov Z.B., Grafov B.M., Savova-Stojnova B.S., Elkin V.V. Èlektrohimičeskij impedans. Moscow: Nauka Publ., 1991 (in Russ.).

17. Kravec L.I., Dmitriev S.N., Goryacheva T.A., Satulu V., Mitu B., Dinescu G. Struktura i èlektrohimičeskie svojstva trekovyh membran, modificirovannyh v plazme tetraftorètana. Membrany i membrannye tehnologii, 2011, vol. 1, no. 2, pp. 126–138 (in Russ.).


Review

For citations:


Dyussembekova A.A., Sokhoreva V.V., Kravets L.I. RESEARCH OF PROPERTIES OF THE POLYPROPYLENE TRACK MEMBRANES WITH A THIN POLYMER LAYER OBTAINED BY THE METHOD OF ELECTRON BEAM DISPERSION OF POLYTETRAFLUOROETHYLENE IN VACUUM. Alternative Energy and Ecology (ISJAEE). 2015;(23):116-125. (In Russ.) https://doi.org/10.15518/isjaee.2015.23.015

Views: 599


ISSN 1608-8298 (Print)