Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search

COMPUTER SIMULATION OF ENERGY SAVING AND ENVIRONMENTALLY FRIENDLY AMPHIBIOUS HOVERCRAFTS FOR ARCTICS AND FAR EAST

https://doi.org/10.15518/isjaee.2015.13-14.013

Abstract

Amphibious hovercrafts (AH) are shown to be promising as an energy and environmentally efficient solution of the transport problems of the Russian north, but the known designs are not fit for it. A new software package has been developed for support of R&D of new AH designs, which implements mathematical models of AH, that take into account the dynamics of AH movement on water and solid horizontal and inclined surfaces with different roughness and large obstacles (ridges), various types of propulsors (contact wheels, aerodynamic propellers, paddle wheels), skirts (classical and consisting of flexible cones), blowers, motors, etc. Detailed 3D calculations have been carried out. The advantages of new, nontraditional designs of AH for the Russian North are shown. 

About the Authors

S. N. Chuvashev
MATI – Russian State University of Aviation Technology
Russian Federation

PhD (BMSTU, 1984) in thermal and molecular physics, Doctor of
Science (Moscow State University, 1998) in physics and chemistry of plasma. Full professor of the Moscow State Aviation Technological University (chair of design of computer systems)



N. M. Yakimov
MATI – Russian State University of Aviation Technology
Russian Federation

Information about the author: teaching assistant at the Moscow State Aviation Technological University (chair of design of computer systems).



E. S. Chuvasheva
MATI – Russian State University of Aviation Technology
Russian Federation

art. lecturer at the department “Designing of computer complexes” MATI



S. D. Popov
MATI – Russian State University of Aviation Technology
Russian Federation

Information about the author: PhD in technical sciences, associate professor of the BMSTUchair “Wheel cars”, chief constructor of the BMSTU Scientific industrial center “Special machine building”, full professor of the UNESCO International chair. He has been a head of a number of R&D projects.



S. A. Popov
MATI – Russian State University of Aviation Technology
Russian Federation

PhD in technical sciences, an adviser of the director of the Nudelman precision engineering design bureau (KB Tochmash), and a member of the Expert council of
the president of the Military industrial commission of the Russian Federation



References

1. Čebotaev А.А., Mel'nik А.D. Bezvrednye transportnye sredstva dlâ Severa. Sb. materialov Vsesoûznoj naučno-praktičeskoj konf. 23–26 oktâbrâ 1990 g. «Naučno-tehničeskij progress i perspektivy razvitiâ novyh specializirovannyh vidov transporta». M.: VNIIPK tehorgneftegazstroâ, 1990. T. 2. S. 115-125.

2. Popov S.D. Fundamental'nye problemy razvitiâ vnutrennego transporta malonaselennyh regionov Rossii i puti ee rešeniâ na osnove razvitiâ vysokomobil'nyh avtomobil'nyh transportnyh kompleksov (na primere Аrhangel'skoj oblasti). Sb. statej po itogam Mežd. naučno-praktičeskoj konferencii «Èkonomika, proektnyj menedžment, obrazovanie, ûrisprudenciâ, èkologiâ, medicina, sociologiâ, filosofiâ, filologiâ, psihologiâ, tehnika, matematika: sostoânie i perspektivy razvitiâ». SPb: Kul'tInformPress, 2013. S. 110-117.

3. Popov S.D., Čuvašev S.N. Proektirovanie i kompleksnoe matematičeskoe modelirovanie sudna na vozdušnoj poduške dlâ regionov Severa, Sibiri i Аrktičeskogo kontinental'nogo šel'fa // Inženernyj žurnal: nauka i innovacii. 2013. № 3 (15). S. 9.

4. Belousov B.N. Heavy-duty wheeled vehicles: Design, theory, calculations. Heavy-duty wheeled vehicles, Warrendale, Pennsylvania, USA: SAE International, 2014, 553 p.

5. Popov S.D. Nekotorye problemy sozdaniâ amfibijnyh transportnyh sistem, prednaznačennyh dlâ rešeniâ transportnyh zadač i osvoeniâ trudnodostupnyh regionov Severa i Sibiri, a takže na Аrktičeskom šel'fe. Materiali za 9-a meždunarodna naučno-praktična konferenciâ Achievement of high school, Sofiâ «Bâl GRАD-Y» OOD, 2013, T. 45, S. 104.

6. Popov S.D., Čuvašev S.N. Razrabotka tehnologii vybora nesuŝego kompleksa dlâ transportnyh sredstv na vozdušnoj poduške (TSVP), prednaznačennyh dlâ èkspluatacii na Severe i v Sibiri. Sb. statej Meždunarodnoj naučno-praktičeskoj konferencii «Innovacionnoe razvitie sovremennoj nauki» / red. А.А. Sukiasân, Ufa: RIC BašGU, 2014. T. 3. S. 287-295.

7. Popov S.D., Čuvašev S.N. Razrabotka tehnologii matematičeskogo modelirovaniâ nekotoryh opasnyh situacij pri èkspluatacii TSVP, prednaznačennyh dlâ èkspluatacii na Severe i v Sibiri. Sb. statej Me-ždunarodnoj naučno-praktičeskoj konferencii «Innovacionnoe razvitie sovremennoj nauki» / red. А.А. Sukiasân, Ufa: RIC BašGU, 2014. T. 3. S. 300-306/366.

8. Popov S.D., Čuvašev S.N. Razrabotka tehnologii vybora dvižitel'nyh kompleksov povyšennoj èffektivnosti dlâ TSVP, prednaznačennyh dlâ èkspluatacii na Severe i v Sibiri. Sb. statej Meždunarodnoj naučnopraktičeskoj konferencii «Innovacionnoe razvitie sovremennoj nauki» / red. А.А. Sukiasân, Ufa: RIC BašGU, 2014. T. 3. S. 296-230/366.

9. Popov S.D., Dolotov K.V., Ovsânnikov B.V. Otrabotka tehnologij issledovanij sostavnyh častej i modelej TSVP, prednaznačennyh dlâ èkspluatacii na Severe i v Sibiri. Sb. statej Meždunarodnoj naučnopraktičeskoj konferencii «Innovacionnoe razvitie sovremennoj nauki» / red. А.А. Sukiasân, Ufa: RIC BašGU, 2014. T. 3. S. 281-286/366.

10. Popov S.D., Dubin А.E. Аmfibijnye transportnye sredstva s gibridnym oporno-hodovym kompleksom // Russkij inžener-transportnik (aviaciâ, avtomobili, spectehnika). 2014. S. 36-37.

11. Čuvaševa E.S., Čuvašev S.N., Zorina I.G. Kompleksnaâ matematičeskaâ model' dlâ konceptual'nogo proektirovaniâ vysokoskorostnyh letatel'nyh apparatov // Informacionnye tehnologii. 2012. № 11(195). S. 10-14.

12. Čuvaševa E.S., Čuvašev S.N. Vybor racional'nyh harakteristik vysokoskorostnyh letatel'nyh apparatov raznyh masštabov na osnove kompleksnoj matematičeskoj modeli // Informacionnye tehnologii. 2013. № 8. S. 12-16.

13. Demeško G.F. Proektirovanie sudov. Аmfibijnye suda na vozdušnoj poduške. Kniga 2. SPb.: Sudostroenie. 1992.

14. Gravdahl J.T., Egeland O., Vatland S.O. Drive torque actuation in active surge control of centrifugal compressors // Automatica. 2002. Vol. 38, № 11. P. 1881-1893.

15. Hindmarsh A. The PVODE and IDA algorithms, Technical Report UCRL-ID-141558, LLNL, 2000.

16. Demeško G.F. Proektirovanie sudov. Аmfibijnye suda na vozdušnoj poduške Kniga 1. SPb.: Sudostroenie, 1992.

17. Prohorov А.M. Fizičeskij ènciklopedičeskij slovar'. M.: Sovetskaâ ènciklopediâ, 1983.

18. Spravočnik po teorii korablâ. T. 3. Upravlâemost' vodoizmeŝaûŝih sudov. / red. Â.I. Vojtkunskij. L.: Sudostroenie, 1985.

19. Mantle P.J. Air cushion craft development, first revision, David W Taylor Naval Ship Research and Development Center Bethesda MD, 1980.

20. Šerstûk А.N. Nasosy, ventilâtory, kompressory. M.: Vysšaâ škola, 1972.

21. Turbiny teplovyh i atomnyh èlektričeskih stancij / red. А.G. Kostûk, V.V. Frolov. M.: MÈI, 2001.

22. Boyce M.P. Gas turbine engineering handbook, Amsterdam; Boston: Elsevier/Butterworth-Heinemann, 2012, 956 p.

23. Moroz L., Govorushchenko Y., Pagur P. et al. A uniform approach to conceptual design of axial turbine/compressor flow path. Future of gas turbine technology, 3rd International conference 11-12 October 2006.

24. Kikstra J.F., Verkooijen A.H.M. Dynamic modeling of a cogenerating nuclear gas turbine plant -Part i: Modeling and validation // Journal of Engineering for Gas Turbines and Power. 2002. Vol. 124. Dynamic modeling of a cogenerating nuclear gas turbine plant -Part i, № 3. P. 725-733.

25. Аbramovič G.N. Prikladnaâ gazovaâ dinamika. T. 1. M.: Fizmatgiz, 1991.

26. Аbramovič G.N. Prikladnaâ gazovaâ dinamika. T. 2. M.: Fizmatgiz, 1991.

27. Černyj G.G. Gazovaâ dinamika, M.: Nauka. Gl. red. fiz.-mat. lit., 1988.

28. Ainley D., Mathieson G., Ministry of Supply A.R.C. An examination of the flow and pressure losses in blade rows of axial-flow turbines: ARC technical report, H.M. Stationery Office, 1951.

29. Benner M.W., Sjolander S.A., Moustapha S.H. Influence of leading-edge geometry on profile losses in turbines at off-design incidence: Experimental results and an improved correlation // Journal of Turbomachinery, 1997, Vol. 119, Influence of leading-edge geometry on profile losses in turbines at off-design incidence, № 2. P. 193-200.

30. Аleksandrov V.L. Vozdušnye vinty. M.: Oborongiz, 1951.

31. Kravec А.S. Harakteristiki vozdušnyh vintov. M.: Oborongiz, 1941.

32. Vetčinkin V.P., Polâkov N.N. Teoriâ i rasčet vozdušnogo grebnogo vinta. M.: Oborongiz, 1940.

33. Šajdakov V.I., Maslov А.D. Аèrodinamičeskoe proektirovanie lopastej vozdušnogo vinta. M.: MАI, 1995.

34. Šajdakov V.I. Аèrodinamičeskij rasčet vertoleta. M.: MАI, 1988.

35. Ûr'ev B.N. Аèrodinamičeskij rasčet vertoleta. M.: Oborongiz, 1956.

36. Sparenberg J.A. Hydrodynamic propulsion and its optimization: Analytic theory: Fluid mechanics and its applications. Vol. 27. Hydrodynamic propulsion and its optimization, Dordrecht; Boston: Kluwer Academic Publishers, 1995, 368 p.

37. Larrabee E.E. The screw propeller // Scientific American. 1980. Vol. 243. P. 134.

38. Hughes M.J. Analysis of multi-component ducted propulsors in unsteady flow: PhD thesis, Massachusetts Institute of Technology, 1993.

39. Ardito Marretta R., Davi G., Lombardi G. et al. Hybrid numerical technique for evaluating wing aerodynamic loading with propeller interference // Computers & Fluids. 1999. Vol. 28, № 8. P. 923-950.

40. Molland A.F. The maritime engineering reference book a guide to ship design, construction and operation, Amsterdam; Boston; London: Butterworth-Heinemann, 2008.

41. Ostoslavskij I.V., Halezov D.V. Harakteristiki vintovyh profilej tipa Klark-U // Tehničeskie zametki CАGI. 1937. № 154.

42. Kašafutdinov S.T., Lušin V.N. Аtlas aèrodinamičeskih harakteristik krylovyh profilej, Novosibirsk: SibNIА, 1994.

43. Denery T. Multi-domain modeling of the dynamics of a hovercraft for controller development // AIAA modeling and simulation technologies conference and exhibit: Guidance, navigation, and control and co-located conferences, American Institute of Aeronautics; Astronautics, 2005.

44. Prohorov А.M. Fizičeskaâ ènciklopediâ. T. 5, M.: Bol'šaâ Rossijskaâ ènciklopediâ, 1998.

45. Koškin N.I. Mehanika. Dinamika vraŝatel'nogo dviženiâ / Èlementarnaâ fizika: Spravočnik. M.: Nauka. Gl. red. fiz.-mat. lit., 1991. S. 32.

46. Witkin A. Physically based modeling: Principles and practice – constrained dynamics // COMPUTER GRAPHICS. 1997. Physically based modeling. P. 11-21.

47. Âkimov N.M., Čuvašev S.N. Programmnoe sredstvo dlâ kompleksnogo matematičeskogo modelirovaniâ složnyh tehničeskih ob"ektov // Informacionnye tehnologii. 2014. № 11. S. 23-30.

48. Cohen S.D., Hindmarsh A.C. CVODE, a stiff/nonstiff ODE solver in c // Computers in physics. 1996. Vol. 10, № 2. P. 138-143.

49. Pierson W.J., Moskowitz L. A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskii // Journal of Geophysical Research. 1964. Vol. 69, № 24. P. 5181-5190.


Review

For citations:


Chuvashev S.N., Yakimov N.M., Chuvasheva E.S., Popov S.D., Popov S.A. COMPUTER SIMULATION OF ENERGY SAVING AND ENVIRONMENTALLY FRIENDLY AMPHIBIOUS HOVERCRAFTS FOR ARCTICS AND FAR EAST. Alternative Energy and Ecology (ISJAEE). 2015;(13-14):117-138. (In Russ.) https://doi.org/10.15518/isjaee.2015.13-14.013

Views: 851


ISSN 1608-8298 (Print)