Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

SYNTHESIS AND CHARACTERIZATION OF GRAPHENE-BASED MATERIALS PRODUCED VIA THERMAL EXFOLIATION OF GRAPHENE OXIDE AND OF ClF3 INTERCALATED GRAPHITE

Аннотация

Graphene-based materials GM1 and GM2 have been synthesized by explosive exfoliating two different precursors: graphite oxide and graphite intercalated with chlorine trifluoride respectively. Compositional and structural transformations of the precursors into final graphene-based materials have been followed by using combination of X-ray photoelectron spectroscopy, FTIR and Raman spectroscopy, and Scanning Electron Microscopy. Specific surface area, pore size and electrical conductivity of the synthesized materials have also been measured. Comparative mass spectrometry analysis of the gas co-products emitted during synthesis has revealed that synthesis of GM1 from graphite oxide is more environmentally viable. However, synthesized GM2 materials possess higher electrical conductivity and are characterized by larger size of graphene sheets. We have demonstrated that the graphene nanosheets can be produced from suspensions of the GM1 and GM2 materials in the aqueous solution of a surfactant dodecylbenzenesulfonate. The potential applications areas for the synthesized materials have been discussed.

Ключевые слова


Об авторах

Александр Борисович Бондарчук
CIC energiGUNE
Россия


Анатолий Степанович Лобач
Института проблем химической физики РАН
Россия


Сергей Алексеевич Баскаков
Института проблем химической физики РАН
Россия


Natalia Spitsyna
Institute of Problems of Chemical Physics RAS
Россия


Aleksandr Ryzhkov
National Research Center "Kurchatov Institute"
Россия


Valery Kazakov
Keldysh Research Center
Россия


Alexander Michtchenko
Instituto Politecnico Nacional
Россия


Alexander Gusev
"Scientific and Technical Center" TATA"" LLC
Россия


Роман Дмитривич Мысык
CIC energiGUNE
Россия


Yury Shulga
Institute of Problems of Chemical Physics RAS; National University of Science and Technology MISIS
Россия


Список литературы

1. Zongping Chen, Wencai Ren, Libo Gao, Bilu Liu, Songfeng Pei and Hui-Ming Cheng. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Mater, 2011, no. 10, pp. 424-428.

2. X. Cao, Y. Shi, W. Shi, G. Lu , X. Huang, Q. Yan, Q. Zhang, H. Zhang. Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small, 2011, vol. 7, no. 22, pp. 3163-3168.

3. Hengxing Ji, Lili Zhang, Michael T. Pettes, Huifeng Li, Shanshan Chen, Li Shi, Richard Piner, and Rodney S. Ruoff. Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes. Nano Lett., 2012, no. 12, pp. 2446-2451.

4. Michael Thompson Pettes, Hengxing Ji, Rodney S. Ruoff, and Li Shi. Thermal Transport in Three-Dimensional Foam Architectures of Few-Layer Graphene and Ultrathin Graphite. Nano Lett., 2012, no. 12, pp. 2959-2964.

5. Hui Bi, Fuqiang Huang, Jun Liang, Yufeng Tang, Xujie Lu, Xiaoming Xie and Mianheng Jiang, Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells. Journal of Materials Chemistry, 2011, no. 21, pp. 17366-17370.

6. Xinming Li, Tianshuo Zhao, Kunlin Wang, Ying Yang, Jinquan Wei, Feiyu Kang, Dehai Wu, and Hongwei Zhu Directly Drawing Self-Assembled, Porous, and Monolithic Graphene Fiber from Chemical Vapor Deposition Grown Graphene Film and Its Electrochemical Properties. Langmuir, 2011, no. 27, pp. 12164-12171.

7. Chan-Park B., Chang Ming Li, Peng Chen. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. Carbon, 2012, no. 50, pp. 4865-4870.

8. Fazel Yavari, Zongping Chen, Abhay V. Thomas, Wencai Ren, Hui-Ming Cheng, Nikhil Koratkar. High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network. Sci. Rep., 2011, no. 1, p. 166; DOI: 10.1038/srep00166.

9. Xiao Li, Pengzhan Sun, Lili Fan, Miao Zhu, Kunlin Wang, Minlin Zhong, Jinquan Wei, Dehai Wu, Yao Cheng, Hongwei Zhu “Multifunctional graphene woven fabrics”. Sci. Rep., 2012, no. 2, p. 395; DOI:10.103 8/srep00395.

10. Yang-Chun Yong, Xiao-Chen Dong, Mary B. Chan-Park, Hao Song, and Peng Chen. Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells. ACS Nano, 2012, vol. 6, no. 3, pp. 2394-2400.

11. Xiaochen Dong, Jingxia Wang, Jing Wang, Mary B. Chan-Park, Xingao Li, Lianhui Wang, Wei Huang, Peng Chen, Supercapacitor electrode based on three-dimensional grapheneepolyaniline hybrid. Materials Chemistry and Physics, 2012, no. 134, pp. 576-580.

12. Cuimei Zhao, Xin Wang, Shumin Wang, Yayu Wang, Yunxiao Zhao, Weitao Zheng. Synthesis of Co(OH)2/graphene/Ni foam nano-electrodes with excellent pseudocapacitive behavior and high cycling stability for supercapacitors. International Journal of Hydrogen Energy, 2012, no. 37, pp. 1184-1152.

13. Zhu Y., Murali S., Stoller M.D., Velamakanni A.; Piner R.D.; Ruoff R. S. Carbon, 2010, no. 48(7), pp. 2118-2122.

14. Zhu Y., Murali S., Stoller M.D. et al., Science, 2011, vol. 332, pp. 1537-1541.

15. Shulga Y.M., Baskakov S.A., Dremova N.N., Shulga N.Y,, Skryleva E.A. Exfoliation and reduction of graphite oxide under microwave heating. Fundam. Prikl. Fiz., 2012, no. 1, pp. 7-10.

16. Makotchenko V.G., Grayfer E.D., Nazarov A.S., Kim S.-J., Fedorov V.E. The synthesis and properties of highly exfoliated graphites from fluorinated graphite intercalation compounds. Carbon, 2011, vol. 49. p. 3233.

17. Kwon J., Lee S.H., Park K.-H., Seo D.-H., Lee J., Kong B.-S., Kang K., and Jeon S. Simple Preparation of High-Quality Graphene Flakes without Oxidation Using Potassium Salts. Small. 2011, vol. 7. p. 864.

18. Dhakate S.R., Chauhan N., Sharm S., Tawale J., Singh S., Sahare P.D., Mathur R.B. An approach to produce single and double layer grapheme from re-exfoliation of expanded graphite. Carbon. 2011, vol. 49, p. 1946.

19. Hummers W.S., Offeman R.E. Journal of the American Chemical Society, 1958, vol. 80, pp. 1339-1341.

20. Muradian V.E,, Ezernitskaya M.G., Smirnova V.I., Kabaeva N.M, Volpin M.E. Conversion of graphite oxide in ionic hydrogenation. Zhurnal Organicheskoi Khimii, 1991, vol. 61, pp. 2626-29.

21. Selig H., Sander W.A., Vasile M.J., Stevie F.A., Gallagher P.K., Ebert L.B. Intercalation of halogen fluorides into graphite. Journal of Fluorine Chemistry, 1978, vol. 12, p. 397.

22. Buravov L.I., Zverev V.N., Kazakova A.V., Kushch N.D., and Manakov A.I. Measurements of the Solidification Point of the GKGH-136 Silicone Liquid. Instrument and Experimental Techniques, 2008, vol. 51, no. 1, p. 156.

23. Ferrari A.C., Basko D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 2013, vol. 8(4), pp. 235-246.

24. Tuinstra F., Koenig J.L. RAMAN SPECTRUM OF GRAPHITE. Journal of Chemical Physics, 1970, vol. 53(3), pp. 1126-1130.

25. Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 2007, vol. 143, pp. 47-57.

26. Kudin K.N., Ozbas B., Schniepp H.C., Prud’homme R.K., Aksay I.A., and Car R. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets, Nano Lett., 2008, vol. 8, no. 1, pp. 36-41.

27. Eigler S., Dotzer C., Hirsch A. Visualization of defect densities in reduced graphene oxide. Carbon, 2012, vol. 50, pp. 3666-3673.

28. Chen C., Li J., Li R., Xiao G. and Yan D. Synthesis of superior dispersions of reduced graphene oxide. New Journal of Chemistry, 2013, vol. 37, pp. 2778-2783.

29. Gao W., Alemany L.B., Ci L. and Ajayan P.M. New insights into the structure and reduction of graphite oxide. Nature Chemistry, 2009, vol. 1, pp. 403-408.

30. Beamson G. BD. High resolution XPS of organic polymers: The Scienta ESCA300 database. Wiley, 1992.

31. Moulder J. F. Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data (pp. 84-85). J. Chastain, & R. C. King (Eds.). Eden Prairie, MN: Physical Electronics, 1995.

32. Touhara H., Okino F. Carbon, 2000, vol. 38, p. 241.

33. Shulga Y.M., Tien T.-C., Huang C.-C., Lo S.-C., Muradyan V.E., Polyakova N.V., Ling Y.-C., Loutfy R.O., Moravsky A.P. Journal of Electron Spectroscopy and Related Phenomena, 2007, vol. 160, pp. 22-28.

34. Matthew R. Lockett and Lloyd M. Smith. Attaching molecules to chlorinated and brominated amorphous carbon substrates via Grignard reactions. Langmuir, 2009. April 9, no. 25(6), pp. 3340-3343.

35. Jian Zheng, Hong-Tao Liu, Bin Wu, Chong-An Di, Yun-Long Guo, Ti Wu, Gui Yu, Yun-Qi Liu, and Dao-Ben Zhu. Production of Graphite Chloride and Bromide Using Microwave Sparks, Sci Rep. 2012, no. 2, p. 662.

36. Pehr E. Pehrsson, Wei Zhao, Jeffrey W. Baldwin, Chulho Song, Jie Liu, Steven Kooi, and Bo Zheng. Thermal Fluorination and Annealing of Single-Wall Carbon Nanotubes. The Journal of Physical Chemistry B, 2003, no. 107, p. 56905.

37. Sairam Agraharam, Dennis W. Hess, Paul A. Kohl, and Sue A. Bidstrup Allen. Plasma chemistry in fluorocarbon film deposition from pentafluoroethane/argon mixtures. Journal of Vacuum Science and Technology A, 1999, vol. 17, no. 6, pp. 3265-3271.

38. Haerle R., Riedo E., Pasquarello A., Baldereschi A. sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation. Physical Review B, 2002, vol. 65, no. 4, pp. 045101-1.

39. Szabo T., Berkesi O., Forgo P. et al. Chemistry of Materials, 2006, vol. 18, pp. 2740-2749.

40. Lomeda J.R., Doyle C.D., Kosynkin D.V. et al. Journal of the American Chemical Society, 2008, vol. 130, pp. 16201-16206.

41. Xu C., Wang X., Zhu J. The Journal Physical Chemistry C, 2008, vol. 112, pp. 19841-19845.

42. Park S., Lee K.-S., Bozoklu G. et al. ACS Nano, 2008, vol. 2, pp. 572-578.

43. Paredes J.I., Villar-Rodil S., Solis-Fernandez P. et al. Langmuir, 2009, vol. 25, pp. 5957-5958.

44. Shan C., Yang H., Song J. et al. Analitical Chemistry, 2009, vol. 81, pp. 2378-2382.

45. Barinov A., Malcioglu O.B., Fabris S., Sun T., Gregoratti L., Dalmiglio M. et al. Initial Stages of Oxidation on Graphitic Surfaces: Photoemission Study and Density Functional Theory Calculations. Journal of Physical Chemistry C, 2009, vol. 113, pp. 9009-9013.

46. Sun T., Fabris S., Baroni S. Surface Precursors and Reaction Mechanisms for the Thermal Reduction of Graphene Basal Surfaces Oxidized by Atomic Oxygen. Journal of Physical Chemistry C, Mar; vol. 115, no. 11, pp. 4730-4737.

47. Shulga Y.M., Baskakov S.A., Knerelman E.I., Davidova G.I., Badamshina E.R., Shulga N.Y. et al. Carbon nanomaterial produced by microwave exfoliation of graphite oxide: new insights. RSC Advances, 2014, vol. 4, no. 2, pp. 587-592.

48. Eberlein T., Bangert ü., Nair R.R., Jones R., Gass M., Bleloch A.L., Novoselov K.S., Geim A., Briddon P.R. Plasmon Spectroscopy of Free-Standing Graphene Films. Physical Review B, 2008, vol. 77, pp. 233406-4.

49. Shulga Y.M., Baskakov S.A., Kiryukhin D.P., Kichigina G.A., Kushch P.P., Dremova N.N., and Skokan E.V. Low-temperature radiation polymerization of tetrafluoroethylene in the presence of the carbon material obtained by explosive exfoliation of graphite oxide. High Energy Chemistry, 2013, vol. 47, no. 2, pp. 73-75.

50. Khudyakov D.V., Borodkin A.A., Lobach A.S., Ryzhkov A.V., and Vartapetov S.K. Saturable absorption of the film composites with single-walled carbon nanotubes and graphene. Applied Optics, 2013, vol. 52, no. 2, pp. 150-154.


Рецензия

Для цитирования:


Бондарчук А.Б., Лобач А.С., Баскаков С.А.,  ,  ,  ,  ,  , Мысык Р.Д.,   . Альтернативная энергетика и экология (ISJAEE). 2014;(19):14-27.

For citation:


Bondarchuk O.B., Lobach A.S., Baskakov S.A., Spitsyna N.G., Ryzhkov A.V., Kazakov V.A., Michtchenko A., Gusev A.L., Mysyk R.D., Shulga Yu.M. SYNTHESIS AND CHARACTERIZATION OF GRAPHENE-BASED MATERIALS PRODUCED VIA THERMAL EXFOLIATION OF GRAPHENE OXIDE AND OF ClF3 INTERCALATED GRAPHITE. Alternative Energy and Ecology (ISJAEE). 2014;(19):14-27. (In Russ.)

Просмотров: 459


ISSN 1608-8298 (Print)