

ASSESSMENT OF ENERGY EFFICIENCY OF POWER PLANT LIFE CYCLES ON THE BASIS OF RES
https://doi.org/10.15518/isjaee.2017.01-03.101-110
Abstract
The paper deals with the evaluation methods of energy efficiency of energy objects (power plants) developed in domestic and foreign practice including the analysis of life cycles (LCA). Moreover, it gives the calculation results of energy efficiency of traditional and renewable power objects. The use of the LCA tools for assessment of energy efficiency of renewable power objects is more detail considered. The paper also analyzes the cost determination results of energy at stages of life cycle and values of energy efficiency criteria for wind power stations and solar photovoltaic power stations received on the basis of LCA.
About the Authors
G. I. SidorenkoRussian Federation
Gennady Sidorenko - D.Sc. (engineering), Professor, department of Water Management and Hydrotechnical Construction.
29 Polytecheskaya str., St. Petersburg, 195251, tel.: +7(812)297-59-28; e-mail: veehkim@rambler.ru
P. Yu. Mikheev
Russian Federation
Pavel Mikheev - Senior Lecturer, department of Civil Engineering and Applied Ecology.
29 Polytecheskaya str., St. Petersburg, 195251, tel.: +7(812)297-59-28; e-mail: veehkim@rambler.ru
References
1. Bezrukih P.P., Sidorenko G.I., Gribkov S.V. et al. Razrabotka metodologii rasčëta i issledovaniâ ènergetičeskoj èffektivnosti èlektričeskih i teplovyh ustanovok, ispol’zuûŝih VIÈ. Otčët o NIR # 05-08-18128-a po ètapu 2005. Moscow, 2005 (in Russ.).
2. Bezrukih P.P., Sidorenko G.I. et al. Razrabotka metodologii rasčëta i issledovaniâ ènergetiče-skoj èffektivnosti èlektričeskih i teplovyh ustanovok, ispol’zuûŝih VIÈ. Otčët o NIR 05-08-18128-a po ètapu 2007. Moscow, 2007 (in Russ.).
3. Yantovskiy E.I., Lukina E.V. Metodika ocenki i èffektivnosti vozobnovlâemyh istočnikov ènergii po ènergii-netto. Izv. AN USSR, ser. Ènergetika i transport. 1990;(2):165–168 (in Russ.).
4. Wagner H. J. Energy from wind – Perspective and research need Materials of Heraeus-conference: A Phys-ics Perspective on Energy Supply and Climate Change – Prediction, Mitigation and Adaptation. Ruhr University Bo-chum, 2008, pp. 70–78 (in Eng.).
5. Fthenakis V., Hyung C., Frischknecht R. Life cycle inventories and life cycle assessment of photovoltaic system. Report IAE–PVPS T12 – 02:2011– 63 p. (in Eng.).
6. Lenzena M., Munksgard J. Energy and CO2 lifecycle analyses of wind turbines – review and applications. Renewable Energy. 2002;(26):339–362 (in Eng.).
7. Raugei M., Bargigli S., Ulgiati S. Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si. Energy. 2007(8):1310–1332 (in Eng.).
8. Kubiszewski I., J. Cutler, Cleveland P. et al. Meta-analysis of net energy return for wind power systems. Renewable Energy. 2010;(35):218–225 (in Eng.).
9. International Organization for Standardization. Environmental management – Life cycle assessment – Re-quirements and guidelines. Switzerland: International Standard Organization, 2006. ISO 14044:2006. (in Eng.).
10. International Organization for Standardization. Environmental management – Life cycle assessment – Prin-ciples and framework. Switzerland: International Standard Organization, 2006. ISO 14040:2006. (in Eng.).
11. Environmental and health impacts of electricity generation. A comparison of the environmental impacts of hydropower with those of other generation technologies. IAE. The International Energy Agency – Implementing agreement for hydropower technologies and programs, 2002 (in Eng.).
12. Martinez E., Sanz F., Pellegrini S. et al. Life cycle assessment of a multi-megawatt wind turbine. Renewable Energy. 2009;(34):667–673 (in Eng.).
13. Garrett P., Ronde K. Life cycle assessment of wind power: comprehensive results from a state-of-theart approach. The International Journal of Life Cycle Assessment. 2013(18):37–48 (in Eng.).
14. Baharwani V., Meena N., Dubey A. Life Cycle Analysis of Solar PV System: A Review. International Journal of Environmental Research and Development. 2014;(4):183–190 (in Eng.).
15. Khagendra P., Collier J., Ellingson R. Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovol-taic systems: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews. 2015;(47):133–141 (in Eng.).
16. Simon D., Hook M., Wall G. A review of life cycle assessments on wind energy systems. The International Journal of Life Cycle Assessment. 2012;(7):678–687 (in Eng.).
17. Masakazu I., Mitsuru K., Masahi N. et al. A comparative study on life cycle analysis of 20 different PV modules installed at the Hokuto mega-solar plant. Progress in Photovoltaic: Research and applications. 2011;(17):878–886 (in Eng.).
18. Meijer A., Huijbregts J., Schermer J. et al. Life cycle assessment of photovoltaic modules: comparison of solar modules. Progress in Photovoltaics: Research and Applications. 2003;(11):275–287 (in Eng.).
19. Garrett P., Ronde K. Life Cycle Assessment of Electricity Production from a V80-2.0MW Gridstreamer Wind Plant. Vestas Wind Systems A/S, 2011. Available at: http:/www. vestas.com (08.08.2016) (in Eng.).
20. Garrett P., Ronde K. Life Cycle Assessment of Electricity Production from an onshore V90-3.0MW Wind Plant. Vestas Wind Systems A/S, 2013. – 106 p. Available at: http:/www. vestas.com (08.08.2016) (in Eng.).
21. Souza N., Shonfield P. Life Cycle Assessment of Electricity Production from a V112 Turbine Wind Plant. Vestas Wind Systems A/S, 2011. – 87 p. Available at: http:/www. vestas.com (08.08.2016) (in Eng.).
22. Garrett P., Ronde K. Life Cycle Assessment of Electricity Production from an onshore V100-2.6 MW Wind Plant. Vestas Wind Systems A/S, 2013. – 107 p. Available at: http:/www. vestas.com (09.08.2016) (in Eng.).
23. Garrett P., Ronde K. Life Cycle Assessment of Electricity Production from an onshore V117-3.3 MW Wind Plant. Vestas Wind Systems A/S, 2014. – 117 p. Available at: http:/www. vestas.com (12.08.2016) (in Eng.).
24. Razdan P., Garrett P. Life cycle assessment of electricity production from an onshore V100-2.0 MW Wind Plant. Vestas Wind Systems A/S, 2015. – 130 p. Available at: http:/www. vestas.com (10.08.2016) (in Eng.).
25. Carrascal S. R. Life cycle assessment of 1 Kwh energy generated by Gamesa G114-2.0 MW On-shore wind farm. Gamesa Coporación Tecnológica, 2014.–45 p. Available at: http:/www.gamesacorp.com (25.03.2016) (in Eng.).
26. Muro Pereg J., Fernandez de la Hoz J. Life cycle assessment of 1 kWh generated by a wind farm Gamesa G90-2.0MW Onshore. Gamesa Coporación Tecnológica, 2015. – 45 p. Available at: http:/www.gamesacorp.com (25.03.2016) (in Eng.).
27. Guezuraga B., Zauner R., Werner P. Life cycle assessment of two different 2 MW class wind turbines. Renewable Energy. 2012;(37):37– 44 (in Eng.).
28. Garrett P., Ronde K. Life Cycle Assessment of Electricity Production from a V90-2.0MW Gridstreamer Wind Plant. Vestas Wind Systems A/S, 2011. – 105 p. Available at: http:/www. vestas.com (13.08.2016) (in Eng.).
29. Garrett P., Ronde K. Life Cycle Assessment of Electricity Production from an onshore V110-2.0 MW Wind Plant. Vestas Wind Systems A/S, 2015. – 129 p. Available at: http:/www. vestas.com (13.08.2016) (in Eng.).
30. Haapala K., Prempreeda P. Comparative life cycle assessment of 2.0 MW wind. Int. J. Sustainable Manufacturing. 2004;(2):170 – 185 (in Eng.).
Review
For citations:
Sidorenko G.I., Mikheev P.Yu. ASSESSMENT OF ENERGY EFFICIENCY OF POWER PLANT LIFE CYCLES ON THE BASIS OF RES. Alternative Energy and Ecology (ISJAEE). 2017;(1-3):101-110. (In Russ.) https://doi.org/10.15518/isjaee.2017.01-03.101-110