

THE SOLAR HOT WATER SYSTEM FOR A HABITABLE LUNAR BASE
https://doi.org/10.15518/isjaee.2017.07-09.021-033
Abstract
The functioning of a habitable lunar base requires not only electricity but also heat energy that can be produced from electricity exclusively according to the existing projects. The use of clean solar heat energy faces a number of difficulties in the practical implementation of solar power plants due to the need for its accumulation and storage during lunar night that lasts 14.75 Earth days. The article considers the scheme of a habitable lunar base solar hot water system which is operable during the lunar day and night and includes flat-plate solar collector with hydrogen heat transfer agent and seasonal heat accumulator in the lunar soil filled with crushed regolith to maintain hot water temperature during lunar night. There are presented the results of the estimation of the solar system design parameters and performance analysis based on the developed mathematical model and computer simulations of dynamic modes of operation of the solar system, located on the equator and the middle latitudes of the Moon.
About the Authors
N. S. KudriavtsevaRussian Federation
D.Sc. (engineering), Professor
E. R. Sadretdinova
Russian Federation
Ph.D. (engineering), Associate Professor of Management of Exploitation in Rocket and Space Systems Department
References
1. Luna – šag k tehnologiâm osvoeniâ Solnečnoj sistemy. Ed. Legostaev V.P. and Lopota V.A. Moscow: RKK “Ènergiâ” Publ., 2011, 584 p. (in Russ.).
2. Semenov Yu.P. Rezul’taty i problemy razrabotok raketno-kosmičeskoj korporacii “Ènergiâ” v oblasti kosmičeskoj ènergetiki. Izvestiâ RAN. Ènergetika. 2003;(5):3–20 (in Russ.).
3. Galimov E.M. Zamysly i prosčety: Fundamental’nye kosmičeskie issledovaniâ v Rossii poslednego dvadcatiletiâ. Dvadcat’ let besplodnyh usilij: S priloženiem: Otzyvy na pervoe izdanie. Diskussii. Kommentarii. No. 21. Moscow: Editorial URSS Publ., 2010, 304 p. (in Russ.).
4. Marov M.Ya., Nefedev Ya.A., Gusev A.V. Kosmičeskie issledovaniâ Luny i planet. Zemlâ i Vselennaâ. 2010;(2):53–60 (in Russ.).
5. Avtomatičeskie kosmičeskie apparaty dlâ fundamental’nyh i prikladnyh naučnyh issledovanij / Ed. Prof. G.M. Poliŝuk and Prof. K.M. Pitshadze. Moscow: Izd-vo MAI-PRINT Publ., 2010, 660 p. (in Russ.).
6. Shibanov G.P. Obitaemost’ kosmosa i bezopasnost’ prebyvaniâ v nem čeloveka. Moscow: Mašinostroenie Publ., 2007, 544 p. (in Russ.).
7. Gribkov A.S., Evdokimov R.A. Racional’nyj oblik sistemy ènergosnabženiâ obitaemoj lunnoj bazy na raznyh ètapah ee osvoeniâ. Izvestiâ RAN. Ènergetika. 2011;(3):105–116 (in Russ.).
8. Beskrovnaya I.A., Evdokimov R.A., Kinash P.M., Kovalev I.I., Tugaenko V.Yu. Sravnitel’naâ ocenka tehniko-èkonomičeskoj èffektivnosti ispol’zovaniâ solnečnyh i âdernyh ènergetičeskih ustanovok v sostave lunnoj bazy. Kosmičeskoâ tehnika i tehnologii. 2014;(4/7):76–88 (in Russ.).
9. Hartov V.V. Aktovaâ reč’: Nam nužno zanovo učit’sâ sadit’sâ na Lunu. Moscow: newspaper “Izvestiâ”, 2012. Available at: http://izvestia.ru/news/55 (25.03.2016) (in Russ.)
10. Lantratov K., Lisov I. Avtomatičeskie mežplanetnye stancii. Novosti kosmonavtiki. 1996;(6/21). Available at: http://epizodsspace.airbase.ru/bibl/nk/1996/21/21-1996.html. (20.03.2016) (in Russ.).
11. Favorskiy O.N., Kadaner Ya.S. Voprosy teploobmena v kosmose. Moscow: Vysšaâ škola Publ., 1967, 248 p. (in Russ.).
12. Kudriavtseva N.S., Malozemov V.V. Kosmičeskie sistemy žizneobespečeniâ: osnovy obespečeniâ èffektivnosti sistem termoregulirovaniâ kosmičeskih apparatov. Inženernaâ èkologiâ. 2012;(2):16–36 (in Russ.).
13. Kudriavtsceva N.S. Osnovy proektirovaniâ èffektivnyh sistem termoregulirovaniâ kosmičeskih apparatov. Moscow: Izd-vo MAI Publ., 2012, 228 p. (in Russ.).
14. Airapetyan S.A., Zakaryan G.A. Teplovoj akkumulâtor ènergii. Patent RF no. RU2027119 (27.07.1992) (in Russ.).
15. Harchenko N.V. Individual’nye solnečnye ustanovki. Moscow: Ènergoatomizdat Publ., 1991, 208 p. (in Russ.).
16. Kudriavtseva N.S., Malozemov V.V. Optimizaciâ parametrov geliosistemy gorâčego vodosnabženiâ. Konversiâ v mašinostroenii. 2008;(1):54–55 (in Russ.).
17. Kudriavtseva N.S., Malozemov V.V. Sovmestnaâ optimizaciâ massoènergetičeskih harakteristik sistemy termoregulirovaniâ kosmičeskih apparatov i pribornogo kompleksa pri obespečenii trebuemoj nadežnosti. Vestnik MAI. 2009;(16/1):5–14 (in Russ.).
18. Malozemov V.V., Kudriavtseva N.S. Optimizaciâ sistem termoregulirovaniâ kosmičeskih apparatov. Moscow: Mašinostroenie Publ.,1988, 108 p. (in Russ.).
19. Aerov M.E., Todes O.M., Narinskiy D.A. Apparaty so stacionarnym zernistym sloem: Gidravličeskie i teplovye osnovy raboty. Leningrad: Himiâ Publ., 1979, 176 p. (in Russ.).
20. Obzor publikacij po teplofizičeskim svojstva lunnogo regolita. Available at: http://www.moongeo.ru/publication.php (15.03.2016) (in Russ.).
21. Slyuta E.N. Fiziko-mehaničeskie svojstva lunnogo grunta (obzor). Astronomičeskij vestnik. 2014;(48/5):358–382 (in Russ.).
22. Galeev A.G., Zagovorchev V.A., Zaharov Yu.V., Rodchenko V.V., Sadretdinova E.R. Èksperimental’naâ proverka metoda vybora proektnyh parametrov reaktivnyh penetratorov dlâ dviženiâ v lunnom grunte. International Scientific Journal for Alternative Energy and Ecology (ISJAEE). 2014;(16):44–50 (in Russ.).
23. Galeev A.G., Rodchenko V.V., Sadretdinova E.R. Vybor parametrov penetratora, vhodâŝego v lunnyj grunt s nulevoj skorost’û. Èlektronnyj žurnal “Trudy MAI”. 2013;( 64) (02.04.2016) (in Russ.).
24. Zagovorchev V.A., Kylasov M.Ya., Rodchenko V.V., Sadretdinova E.R. Issledovanie processa vzaimnogo vliâniâ reaktivnogo penetratora s gruntom s pomoŝ’û matematičeskogo modelirovaniâ. Naučnotehničeskij vestnik Povolž’â. 2016;(6):131–134 (in Russ.).
25. Cherkasov I.I., Shvarev V.V. Grunt Luny. Moscow: Nauka Publ., 1975, 144 p. (in Russ.).
Review
For citations:
Kudriavtseva N.S., Sadretdinova E.R. THE SOLAR HOT WATER SYSTEM FOR A HABITABLE LUNAR BASE. Alternative Energy and Ecology (ISJAEE). 2017;(7-9):21-33. (In Russ.) https://doi.org/10.15518/isjaee.2017.07-09.021-033