

ВОДОРОДНЫЕ ТЕХНОЛОГИИ: ПРЕДМЕТ И ЦЕЛИ КОММЕРЦИАЛИЗАЦИИ

Раменский Александр Юрьевич президент НАВЭ, ответственный секретарь ТК 029, к.т.н.

Москва

Содержание

- 1. Введение
- 2. Анализ инвестиционной привлекательности водородных технологий и топливных элементов
- 3. Коммерциализация топливных элементов в условиях развитой системы технического регулирования в области водородных технологий в России революция на рынке или текущая коммерческая деятельность, направленная на получения конечного финансового результата?
- 4. Инвестиции и техническое регулирование единство и борьба противоположностей
- 5. Типовой транспортно-энергетический комплекс (ВТЭК): техническое регулирование и экономика
- 6. Выводы и рекомендации

Введение

Водородная экономика: глобализация или раздел сфер влияния на мировом рынке?

Международная стандартизации в области водородных технологий и ТЭ

Структура производства водорода в России

Этапы становления технологий водородной энергетики в России

Нанотехнологии в водородной экономике: ключевая роль в создании перспективных машин и оборудования

Водородная экономика: глобализация или раздел сфер влияния на мировом рынке?

RAMBLER, DAVOS: 13 компаний Америки, Европы и Азии объединились в «Водородное сообщество» с целью инвестировать 10 млрд Евро в течение 5 лет

Die Welt: Германия инвестирует 265 миллионов евро до 2030 г.

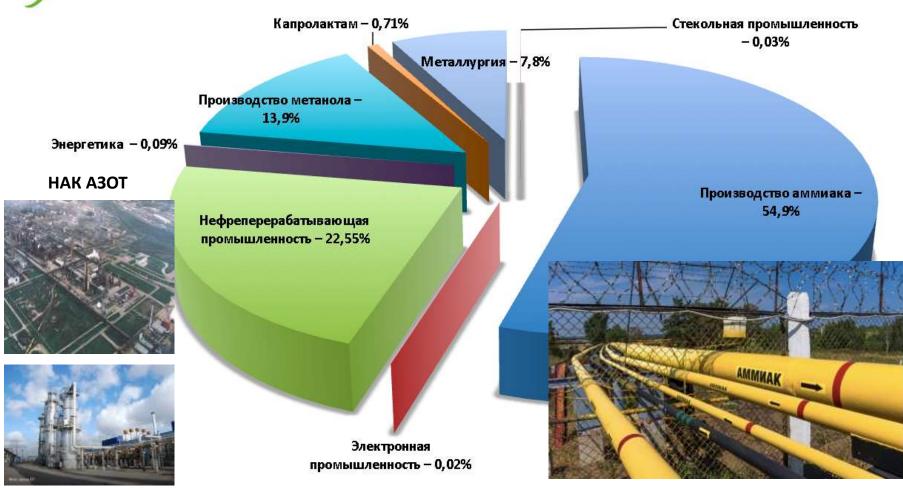
ISO/TC 197 «Водородные технологии» 25 лет стандартизации водородных технологий

Международная ассоциация водородной энергетики (IHEA) – 40 лет международной деятельности

ТАСС: Правительство Японии намерено к 2030 г. довести парк автомобилей на FC до 800 тысяч шт.

Глава корпорации Plug Power Энди Марш— «Власти Китая планируют инвестировать в технологии ТЭ к 2030 до \$ 100 млрд»

Международная стандартизации в области водородных технологий и ТЭ


Наименование организации	Наименование технического комитета/подкомитета	Количество стандартов (шт)		
Организации	комитеталодкомитета	Введено	Проекты	
	ISO/TC 197 "Водородные технологии» P-member (33 чл.)	17	16	
120	ISO/TC22/SC 37 «Электрические самоходные транспортные средства» P-member (30 чл.)	22	12	
Международная организация по стандартизации	ISO/TC22/SC 41 «Особенности применения газомоторного топлива» О-member (70 чл.)	5	1	
(ISO)	ISO/TC 58 «Газовые баллоны» РОССТАНДАРТ в ТС не участвует	99	36	
Международная электротехническая комиссия (IEC)	IEC/TC 105 «Технологии топливных элементов» O-member (32 чл.)	15	7	

H2ORG.RU

>>

Структура производства водорода в России

Самарские НПЗ (Роснефть) полностью перешли на выпуск бензинов «Евро-5»

ТоАЗ, трубопровод Тольятти-Одесса 2,5 млн тонн в год

Этапы становления технологий водородной энергетики в России

1979 г.

1987 г.

1988 г.

Шелищ Б.И. (1908-1980 rr.) Техник - лейтенант ПВО Ленинградского фронта

Шатров Е.В. (1933-1998 гг.) Заместитель директора НАМИ

Лидоренко Н.С. (1916-2009 rr.), Директор ВНИИТ

Губанов Б. И. (1930-1999 rr.) Главный конструктор ракеты - носителя «Энергия»

Туполев А.А. (1925-2001r.) Генеральный конструктор ОКБ

2003 г. Мирзоев Г.К. Главный конструктор ОАО АВТОВАЗ

2007 г. НП НАВЭ

2016 г. ЦИАМ

2015 г. ОСК

Нанотехнологии в водородной экономике: ключевая роль в создании перспективных машин и оборудования

Производство катализаторов для конверсии углеводородов

Производство электроэнергии с использованием солнечных батарей

Хранение водорода с использованием нанотрубок (7,7% H2)

Производство катализаторов для электролиза воды

Производство композитных материалов для баллонов высокого давления

Производство катализаторов для протонообменных мембран ТЭ

Анализ инвестиционной привлекательности водородных технологий и топливных элементов

Водород «шагает» по планете: И не только шагает...

Водород «шагает» по планете: Легковые H2-электро

Водород «шагает» по планете: Электропогрузчики

Водород «шагает» по планете: Коммерциализация в США

Водород «шагает» по планете: И не только шагает...

2020 г. Паром Fiskerstrand Holding AS (Новегия)

2016 г. ж/д локомотив. Alstom Coradia (Франция)

2007 г. U212A Подводная лодка (Германия)

2015 г. Автопогрузчики Plug Power, FC (США)

2010 г. Водородная заправочная станция компании Air Liquide (Франция)

2020 г. Танкер для перевозки водорода из Австралии в Японию

2015 г. Автобус, Toyota, FC, (Япония)

2016 г. Самолет RX1E, (КНР)

2014 г. Boeing X-51 гиперзвуковой водородный аппарат (США)

Водород «шагает» по планете: Легковые H2-электро

2014 г. Toyota Mirai FUEL CELL (Япония)

2014 г. Honda Clarity FUEL CELL (Япония)

2016 г. Haval H2 (Китай)

2016 г. Audi H-Tron FUEL CELL (Германия)

2016 г. Lexus FUEL CELL (Япония)

2016 г. Pininfarina-h2speed (Италия)

2016 г. BMW FUEL CELL (Германия)

2014 г. Hyundai ix35 FUEL CELL (Корея)

2014 г. Mercedes— Benz H2 Fuel-Cell (Германия)

2012 r. Black Cab FUEL CELL (UK)

2016 г. Nissan e-BIO FUEL CELL (Япония)

2014 г. Ford Explorer Fuel Cell (США)

Водород «шагает» по планете: Электропогрузчики

Погрузочная техника Linde **Material Handling**

ЕВРАЗИИСКИИ СОВЕТ ПО СТАНДАРТИЗАЩИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ EURO-ASIAN COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (EASC) **FOCT** МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

IEC 62282-4-101-2017

ТЕХНОЛОГИИ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Часть 4-101

Энергоустановки на топливных элементах, отличные от автомобильных и вспомогательных энергосистем. Безопасность электрических автопогрузчиков

(IEC 62282-4-101:2014, IDT)

Издание официальное

Минск

Оборудование для работы поргузчикок на ТЭ Plug Power

Водород «шагает» по планете: Коммерциализация в США

По данным американской ассоциации FCHEA 23 компании из списка «Fortune 100 Best Companies To Work For» используют технологии топливных элементов, в том числе:

1	Walmart	44 ретейлера используют энергоустановки на ТЭ в штатах Калифорнии и Коннектикут, более 2500 погрузчиков на ТЭ	
5	Apple	10 МВт установленных мощностей обеспечивает питан центра обработки данных	
6	General Motors		
7	General	Компания развивает производство твердооксидных	
_ ′ _	Electric	топливных элементов	
9	Ford	Компания создает транспортные средства на ТЭ	
12	AT&T	Сотни вышек сотовой связи оснащены генераторами с ТЭ	
21	JPMorgan	Энергоустановки на топливных элементах используются в	
	Chase	дата-центрах компании	
23	Bank of	Энергоустановки на топливных элементах используются	
23	America	на объектах	
24	IBM	1 МВт установленных мощностей обеспечивает питание	
2 4		центра обработки данных	
27	Boeing	Компания развивает технологии топливных элементов в	
21		авиации	

Коммерциализация топливных элементов в условиях развитой системы технического регулирования в области водородных технологий в России – революция на рынке или коммерческая деятельность, направленная на конечный финансовый результат?

Законодательная база водородных технологий

Техническое регулирование водородных технологий и ТЭ

Классификация транспортных средств с системой топливных элементов (ТСТЭ)

Льготы на владение электромобилями, в том числе ТСТЭ

Законодательная база водородных технологий

Ф3 от 21.07.1997 года №116-Ф3

О промышленной безопасности опасных производственных объектов

ПБ 03-598-03

Правила безопасности при производстве водорода методом электролиза воды

Федеральные нормы и правила в области промышленной безопасности

Ф3 от 27.12.2002 года №184-Ф3

О техническом регулировании

Ф3 от 29.06.2015 года №162-Ф3

О стандартизации в Российской Федерации

Таможенный

союз

TP TC 010/2011

TP TC 016/2011

TP TC 032/2013

ИСО/ТК 197 Водородные

технологии

Стандарты

ИСО

МЭК/ТК 105 Технологии топливных элементов Стандарты МЭК **TK 29**

Водородные технологии стандарты

ГОСТ Р

ИСО

Техническое регулирование водородных технологий и топливных элементов

гост Р исо

CnHm (гост Р исо 22734-1-2013,

Электролиз воды

54110-2010

Д

T00T

4

22734-2-201

и конверсия

водорода

Безопасность транспортных средств на ТЭ

 Ξ

Безопасность энергоустановок на ТЭ

Безопасность производства

топливу

¥

требования

ехнические

55466-

10CT

P MCO 14687-1-2012,

(FOCT

-3-2016

14687

FOCT ISO

2013,

водорода -2013) 26142 **УТЕЧКИ** P MCO Диагностика (POCT

-2015**ELOT** Электрические П

23273 <u>80</u> (FOCT 018?2011

автопогрузчики 62282-4-101-2017 Электрические TOCT IEC

55226-2012 Д TOCT Водородные

станции

правочные

3a1

M \Im K2016) 62282-5-Щ E 100T Энергоустановки -2014, 62282-3-100

Монтаж -2016**(7)** -3-300E 62282-Энергоустановки Ш (FOCT

OCT IEC 62282-3-200-2014) Методы ტ H E E Энергоустановки испытания.

Классификация транспортных средств с системой топливных элементов (TCTЭ)

ГОСТ Р 56188.1–2014/IEC/TS 62282-1– 2010 п. 3.8:

«Транспортное средство на топливных **(TCT3):** Электрическое элементах транспортное средство, котором энергетическая система на **ТОПЛИВНЫХ** элементах подает питание на электродвигатель ДЛЯ приведения транспортного средства в движение»

Технический регламент
Таможенного союза
«О безопасности
колесных транспортных средств»
(ТР ТС 018/2011)

(Утвержден решением Комиссии Таможенного союза от 9 декабря 2011 г. № 877) ФЕДЕРАЛЬНОЕ АГЕНТСТВО
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

АЦИОНАЛЬНЫЯ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ FOCT P 56188.1-2014 /IEC/TS 62282-1:2010

ТЕХНОЛОГИИ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Часть 1 Терминология

IEC/TS 62282—1:2010 Fuel Cell Technologies — Part 1:Terminology (IDT)

Издание официальное

Пьготы на владение электромобилями, в том числе ТСТЭ

Ввозные таможенные пошлины для электрокаров вновь отменены (Заседании совета ЕЭК от 12 июля 2016 г. Льгота вступила в силу с 2 сентября 2016 года. Льготный период продлится до 31 августа 2017 года.

Ставка таможенной пошлины на легковые электромобили снизится с 17 до 0 процентов, а на грузовые с полной массой до 5 тонн — с 15 до 5 процентов.

Собственникам электрокаров в Москве предоставлено право бесплатной парковки в центре города. Одновременно предлагается разрешить движение электромобилей по выделенным полосам для общественного транспорта, а также освободить их от уплаты транспортного налога.

Инвестиции и техническое регулирование – единство и борьба противоположностей

Инструменты инновационной деятельности

ТСТЭ – газобаллонное электрическое транспортное средство – инвестиционный тупик или прорывная технология?

Лидеры мирового автопрома в России: Действующая сеть дилеров

Инструменты инновационной деятельности

Финансовое и налоговое регулирование

Техническое регулирование

О техническом регулировании от 27 декабря 2002 г. N 184-Ф3 О стандартизации в Российской Федерации" от 29 июня 2015 г. N 162-Ф3 (РОССТАНДАРТ, МИНПРЮМТОРГ)

Технические регламенты и стандарты

Об инвестиционной деятельности в РСФСР" от 26.06.1991 N 1488-1

Налоговый кодекс РФ. Часть 1 от 31.07.1998 № 146-Ф3 (ст. 66).

Об инвестиционной деятельности в Российской Федерации, осуществляемой в форме капитальных вложений

от 25.02.1999 N 39-ФЗ

О защите прав и законных интересов инвесторов на рынке ценных бумаг

ot 05.03.1999 N 46-Φ3

Об иностранных инвестициях в Российской Федерации

oτ 09.07.1999 N 160-Φ3

Об инвестиционных фондах" от 29.11.2001 N 156-ФЗ Об инвестиционном товариществе" от 28.11.2011 N 335-ФЗ (МИНФИН, МИНЭКОНОМРАЗВИТЯ)

О промышленной безопасности опасных производственных объектов от 21.07.1997 № 116-ФЗ (РОСТЕХНАДЗОР)

Государственный надзор

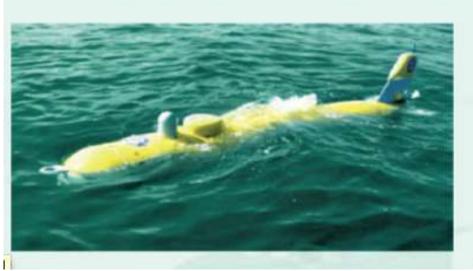
ТСТЭ – газобаллонное электрическое транспортное средство – инвестиционный тупик или прорывная технология?

Газобаллонный автомобиль

AFHKC-500

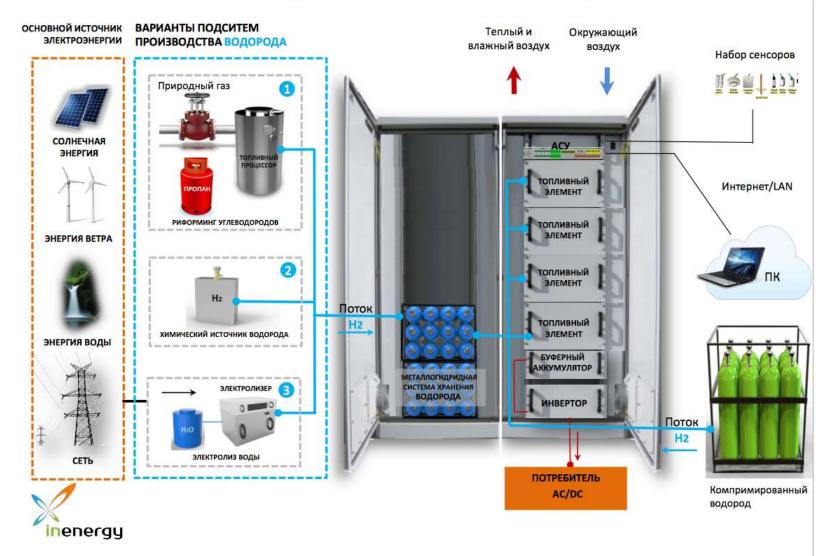
Городской трамвай

Троллейбус



Коммерциализация топливных элементов в условиях развитой системы технического регулирования в России – революция на рынке или текущая коммерческая деятельность, направленная на получение конечного финансового результата?

- ЦНИИ СЭТ Крыловского государственного научного центра;
- Водородная платформа электроснабжения «Астра»;
- Беспилотные летательные аппараты с системой ТЭ;
- Электрические транспортные средства отечественной разработки первый этап освоения ТСТЭ;
- Инвестиционный портфель РОСНАНО в области ТЭ, куда идти?


Разработка технических предложений в части применения топливных элементов как составной части анаэробной энергоустановки

ВОДОРОДНАЯ ПЛАТФОРМА ЭЛЕКТРОСНАБЖЕНИЯ "АСТРА"

Беспилотные летательные аппараты с системой ТЭ

Объединённая авиастроительная компания Центральный институт авиационного моторостроения имени П.И. Баранова

ATEnergy

Института проблем химической физики РАН

Характеристики системы ТЭ

Мощность номинальная

Пиковая мощность к номинальной

Топливо и окислитель

Диапазон эксплуатационных температур

Давление в баллоне Н2

Давление в батарее ТЭ

Тип охлаждения

Вес системы

Время запуска

Ресурс системы ТЭ

Заправочные станции

В дополнении к системам ТЭ поставляются комплексы заправочных станций. Существует несколько вариантов исполнения заправочной станции, учитывающих требования по производительности, климатическим условиям и автономности.

национальная вишаироээа йондочодов изитэтчэне

Электрические транспортные средства отечественной разработки

Электробус ЛИАЗ-6274
Максимальная скорость
движения электробуса на 80
горизонтальном участке, км/ч
Максимальный запас хода
электробуса на накопителях без 200
подзарядки, км.

подзарядки, км. Аккумуляторная батарея литий-ионная (Лиотех)

Электробус КАМАЗ
Максимальная скорость движения
электробуса на горизонтальном 75
участке, км/ч

Запас хода электробуса на накопителях без подзарядки, км.

Аккумуляторная батарея литий-титановая

Инвестиционный портфель РОСНАНО в области ТЭ

Lilliputian Systems, Inc., портативные топливные элементы

ТМК-ИНОКС печь с защитной атмосферой на базе чистого водорода

СИГМА. Новосибирск палладиевое покрытие на водородные мембраны

Наноцентр "Дубна" Топливные элементы

Завод Усолье-сибирский селикон поликристаллический кремний

«НЭВЗ-КЕРАМИКС» наноструктурированная керамика (ТОТЭ)

Гиповой транспортно-энергетический комплекс (ВТЭК): техническое регулирование и экономика

Схема водородного топливно-энергетического комплекса (ВТЭК)

Предложения на рынке водородных заправочных станций

Предложения на рынке пассажирских автобусов с системой ТЭ

Экономическая эффективность ВТЭК

Сравнительный анализ состава технического водорода и водородных топлив

ВТЭК в составе электрогенерирующих компании: Ветроводородный проект

Центр испытания машин и оборудования на водородном топливе

Сравнительный анализ состава технического водорода и водородных топлив

мкмоль/моль (*µmol/mol*)

	ГОСТ 3022-80		ΓΟCT 51673-2000		ГОСТ Р 55466-2013	FOCT ISO 14687-3-2016	
Наименование, характеристики						Тип I	
	Сорт А	Сорт В	Высший	Первый	Второй	Сорт D	Сорт E (кат. 3)
Индекс водородного топлива (минимальная объемная концентрация, %) ⁽²⁶⁾	99,99	99,95	99,9999	99,999	99,994	99,99	99,9
Параводород (минимальная объемная концентрация, %)	-	-	-	-	-	_	-
	аксимальн	∟ ре содерж	кание ^(2и)			1	
Общее содержание ^(2a) примесных газов	100	500	0,1	1	6	100 ^(2B)	1000
Вода	20 г/м ³	20 г/м ³	0,2	2	4	5	H/K
Общее содержание ⁽²⁾ углеводородов			0,3	3	20	2 ^(2r)	2
Кислород			0.0	2	20	5	50
Аргон	100 500		0,2	2	20		
Азот			0,5	3	20	100	1000
Гелий	-	-	-	_	_		
CO ₂	-	-	_	_	-	2	2
СО	-	-	_	-	_	0,2	0,2
Ртуть	_	-	_	_	_	_	_
Сера ^(2д)	-	-	-	_	_	0,004 ^(2ж)	0,004
Формальдегид (НСНО)	-	-	-	_	_	0,01	0,01
Муравьиная кислота (НСООН)	-	-	_	_	_	0,2 ^(2ж)	0,2
Аммиак (NH ₃)	_	-	-	-	_	0,1 ^(2ж)	0,1
Всего галогенированных соединений	-	-	-	-	-	0,05	0,05
Максимальный размер частиц, мкм	-	-	-	-	-	10	75
Максимальная концентрация частиц	-	_	_	-	-	1 мкг/л	1 мг/кг

Предложения на рынке водородных заправочных станций

Air Products (США, представительство в РФ)

Scandinavian Hydrogen Highway Partnership

Linde Group (Германия, ДК РФ)

Indian Oil (Индия)

Предложения на рынке пассажирских автобусов с системой ТЭ

BC Transit Fuel Cell Bas (Канада)

Toyota FCHV Bus-2010 (Япония)

MEXITOCYДАРСТВЕННЫЙ ССВЕТ ПО СТАНДАРТИЗАЦИИ. МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (MIC). INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

> МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

FOCT ISO 23273— 2015

ДОРОЖНЫЕ ТРАНСПОРТНЫЕ СРЕДСТВА НА ТОПЛИВНЫХ ЭЛЕМЕНТАХ

Требования безопасности.
Защита от опасностей, связанных с применением сжатого водорода в качестве автомобильного топлива

(ISO 23273:2013,
Fuel cell road vehicles — Safety specifications — Protection against hydrogen hazards for vehicles fuelled with compressed hydrogen IDT.

Издание официальное

Mersedes-Benz Citaro FC (Германия)

Ballard Powered Fuel Cell Electric Bus in China

Экономическая эффективность ВТЭК

http://h2org.ru/images/stories/20150811vtk.pdf

Наимонования	0.7	
Наименование	ед.	
Стоимость водородной заправочной станции (ВЗС)	млн.руб	120,0
o torring of Bodgopod trovi ordinario (Boo)	тыс.евро	2000,0
Производительность станции по Н₂ в час	M ³	60,0
Производительность станции по Н₂ в сутки	КГ	135,0
Количество заправляемых автобусов	кг/ч	3
Стоимость 1 квт.ч электрической энергии	руб	2,8
Энергозатраты на производство и компримирование	_	
H_2	квт.ч/м ³	4,8
Прямые расходы на обслуживание станции		
(годовые)	млн.руб	10,5
Себестоимость 1 кг водорода	руб	214
Справочно:	евро	3,6
Стоимость электробуса	млн.руб	45,0
Справочно:	тыс.евро	750,0
Протяженность маршрута (в одну сторону)	км	50,0
Стоимость билета в один конец	руб	100
Количество пассажиромест в автобусе	чел.	70
Расход водорода на 100 км	кг	6,0
Выручка от работы комплекса годовая, без НДС	млн.руб	76, 6
Затраты на обслуживание комплекса (годовые)	млн.руб	47,1
Прибыль предприятия после налогообложения	млн.руб	23, 6
Срок окупаемости комплекса	год	4,8

ОДОРОДНОЙ

ВТЭК в составе электрогенерирующих компании:


ветроводородный проект

ГОСТ Р ИСО 22734-1-2013

ΓΟCT ISO 11114-1-2017 ГОСТ Р 54114-2010

Ветропарк

ЛЭП

Энергоустановка на ТЭ

Центр испытания машин и оборудования на водородном топливе

IDD 02283-3-000 0244
Find cold tearns agree - Port 2-200
Find cold person split uses - Portin season I refused rasks
UUT 1

Million CEAP 24450

Construction (See

езгазийский совет по стандытизации, четтелютие и сегти виждии (весс).

ним веста света на на визимане на мене чен син син син светана и и сеста света на виждение и сеста света све

межгосударстарника стандарт IE

FOCT IEC-62282-7-1 -2016

ТЕХНОЛОГИИ ПРОИЗВОДСТВА ТОПЛИВНЫХ БАТАРЕЙ

+301...2.1 Голганична этимить с потимации и этимуститен Изгоры с этимитения крачичного этимите

PECTO 622557-1520 IO, IDTO

менея. Зарывайства селит по стандартегация, митропотов и сертефикацыя.

MULPPACABON A PRINCIPAL

Выводы и рекомендации

- 1. Действующая национальная законодательная и нормативно-техническая база формирует благоприятный инвестиционный климат для коммерциализации водородных технологий и топливных элементов в Российской Федерации.
- 2. Ключевым звеном коммерциализации технологий топливных элементов в России на современном этапе является создание экономически эффективных транспортно-энергетических комплексов ВТЭК, в том числе в составе электрогенерирующих объектов.
- 1. Реформа технического регулирования Российской федерации создает благоприятные условия для дальнейшей модернизации нормативно-технической базы водородных технологий, устранения архаичных норм, а также формирования правоприменительной практики в области нормативнотехнического регулирования водородных технологий.
- 1. Международное сотрудничество в рамках технических комитетов ISO/TC 197 и IEC/TC 105, имплементация международных стандартов в национальную и межгосударственную систему технического регулирования являются приоритетным направлением коммерциализации водородных технологий и топливных элементов в России