Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

SIMULATION OF PENETRATOR MOVEMENT DYNAMICS AT THE CONTACT WITH THE GROUND OF THE PLANET ON THE SHOCK TABLE

https://doi.org/10.15518/isjaee.2017.13-15.077-090

Abstract

The paper deals with the actual problem of studying the lunar surface for the creation of an inhabited station, as well as the prevention of an asteroid hazard, including due to the drilling of wells up to a depth of ten meters. In connection, it is advisable to use the solid fuel rocket engine as a booster of a shock table. This rocket engine provides a study of the behavior of the model and the natural sample under the action of accelerations reaching 50-200, and the speed of sample input into the ground to 100-1500 m/s during overclocking.

Penetrating probes (penetrators) are tested as a model, and can be presented in different designs: inertial, single- and multi-module with solid fuel rocket engines. Penetrators with solid fuel rocket engines have a number of advantages, the main of which are high power-to-weight ratio with minimal weight, reliability and simplicity of the system.

The paper considers an algorithm for calculating the energy characteristics of the accelerating system with a solid fuel rocket engine, and proposes a schematic diagram of the shock table for penetrator research. The analysis was carried out and the parameters of the solid fuel rocket engines were determined to ensure that the samples were studied in the required range of changes in the acceleration and the speed of input into the ground. Moreover, the technique and technology of conducting experiments and studies of the motion of penetrators in model soils are given, taking into account the safety of testing.

The recommended installation for working out penetrators is designed for research in a wide range of changes in the rates of sample input into the soil. 

About the Authors

A. G. Galeev
Moscow Aviation Institute (National Research University)
Russian Federation

D.Sc. (engineering), Professor at Operation Management of RSS Department of Moscow Aviation Institute, a Member of the K.E. Tsiolkovsky Russian Academy of Cosmonautics, Chief Researcher of the PCF “SIC RSI”; a participant in working out a number of systems for missile and space programs “Space-1”, “Space-3”, “N1L3”, “EnergiaBuran”, “GSLV”, “Angara” and others,

4 Volokolamsk drive, GSP-3, A-80, Moscow, 125993



Yu. V. Zaharov
Moscow Aviation Institute (National Research University)
Russian Federation
D.Sc. (engineering), Professor at the Department of Applied Synergetics of Moscow Technological University; a participant of working out of rocket and space technology, including the programs for the creation of automatic interplanetary stations: Luna-22, 24, Mars-6, 7, Venera-15, 16, etc; a participant in the liquidation of the consequences of the Chernobyl catastrophe


V. V. Rodchenko
Moscow Aviation Institute (National Research University)
Russian Federation
D.Sc. (engineering), Professor at the Department of Applied Synergetics of Moscow Technological University; a participant of working out of rocket and space technology, including the programs for the creation of automatic interplanetary stations: Luna-22, 24, Mars-6, 7, Venera-15, 16, etc; a participant in the liquidation of the consequences of the Chernobyl catastrophe


D. N. Michaylov
Moscow Aviation Institute (National Research University)
Russian Federation
Deputy General Designer for Testing at NPO named after S.A. Lavochkin; a participant in the development of AKA Electro-L, Spectrum-R, Luna-Glob, Spectrum-RG, MKA FKI, etc.; a former director and participant of the ground-based experimental development of the AKA: Spectrum-RG, Arktika-M, the Fregat upper stage, Spectrum UV, and others


E. V. Gusev
Moscow Aviation Institute (National Research University)
Russian Federation
Senior Lecturer in Management of Operation of RSS department


References

1. Bazhenov V.I., Osin M.I., Zaharov YU.V. Modeling of basic characteristics and processes of functioning of space vehicles (Modelirovanie osnovnykh kharakteristik i protsessov funktsionirovaniya kosmicheskikh apparatov). Moscow: Mashinostroenie Publ., 1985 (in Russ.).

2. Rodchenko V.V. The fundamentals of designing reactive vehicles for ground motion (Osnovy proektirovaniya reaktivnykh apparatov dlya dvizheniya v grunte). Moscow: Izd-vo MAI-PRINT Publ., 2009 (in Russ.).

3. Galeev A.G. Design of test benches for experimental testing of rocket and space equipment (Proektirovanie ispytatel'nykh stendov dlya eksperimental'noi otrabotki ob"ektov raketno-kosmicheskoi tekhniki). Moscow: Izd-vo MAI Publ., 2014 (in Russ.).

4. Galeev A.G. Experimental verification of the method of choosing the design parameters of reactive penetrators for motion in the lunar soil (Eksperimental'naya proverka metoda vybora proektnykh parametrov reaktivnykh penetratorov dlya dvizheniya v lunnom grunte). International Scientific Journal for Аlternative Energy and Ecology (ISJAEE), 2014;(16):46–60 (in Russ.).

5. Rodchenko V.V. Influence of the features of engine performance on the technical characteristics of the lunar penetrator (Vliyanie osobennostei funktsionirovaniya dvigatelya na tekhnicheskie kharakteristiki lunnogo penetratora). Elektronnyj zhurnal Trudy MAI, 2012;(59). Available at: http//: trudymai.ru/published.php?ID=35254 (20.04.2017) (in Russ.).

6. Rodchenko V.V. Selecting the parameters of the working process in the steam-water booster booster devices (Vybor parametrov rabochego processa v parovodyanyh razgonnyh ustrojstvah udarnyh stendov). International Scientific Journal for Аlternative Energy and Ecology (ISJAEE), 2014;(22):12–23 (in Russ.).

7. Aleksandrovskaya L.N. Theoretical bases of tests and experimental development of complex technical systems (Teoreticheskie osnovy ispytanii i eksperimental'naya otrabotka slozhnykh tekhnicheskikh sistem). Moscow: Logos Publ., 2003 (in Russ.).

8. Galeev A.G. Operation of test complexes of rocket and space systems (Ekspluatatsiya ispytatel'nykh kompleksov raketno-kosmicheskikh sistem). Moscow: Izd-vo MAI Publ., 2007 (in Russ.).

9. Galeev A.G. Stages of flight, factors and loads acting on rocket and space technology in scientific studies of planets using oxygen-hydrogen fuel (Etapy poleta, faktory i nagruzki, dejstvuyushchie na raketno-kosmicheskuyu tekhniku pri nauchnyh issledovaniyah planet s ispol'zovaniem kislorodno-vodorodnogo topliva). International Scientific Journal for Аlternative Energy and Ecology (ISJAEE), 2016;(9–10):95–106 (in Russ.).

10. Galeev A.G. Design of test benches for heattesting of space vehicles (Proektirovanie ispytatel'nykh stendov dlya teplovakuumnykh ispytanii kosmicheskikh apparatov), M.: Izd-vo MAI, 2015 (in Russ.).

11. Afanas'ev V.A. Experimental development of spacecrafts (Eksperimental'naya otrabotka kosmicheskikh letatel'nykh apparatov). Moscow: Izd-vo MAI Publ., 1994 (in Russ.).

12. Afanas'ev V.A. Tests of aircraft under impact loads (Ispytaniya letatel'nykh apparatov pri vozdeistvii udarnykh nagruzok). Moscow: Izd-vo MAI Publ., 1990 (in Russ.).

13. Test equipment (Ispytatel'naya tekhnika) / Ed. V.V. Klyuev. Moscow: Mashinostroenie Publ., 1982 (in Russ.).

14. Makarov V.P. Creation and improvement of the test bench of automatic space vehicles (Sozdanie i sovershenstvovanie stenda udarnykh ispytanii avtomaticheskikh kosmicheskikh apparatov). Vestnik NPO im S.A. Lavochkina, 2013;(1):56–62 (in Russ.).

15. Efanov V.V. Actual problems of the design of automatic space vehicles for fundamental and applied scientific research (Aktual'nye voprosy proektirovaniya avtomaticheskikh kosmicheskikh apparatov dlya fundamental'nykh i prikladnykh nauchnykh issledovanii), Himki: NPO im. S.A. Lavochkina Publ., 2015, 352 p. (in Russ.).

16. Efanov V.V. Design of automatic space vehicles for basic scientific research (Proektirovanie avtomaticheskikh kosmicheskikh apparatov dlya fundamental'nykh nauchnykh issledovanii). Moscow: Izd-vo MAI-PRINT Publ.: vol. 1, 2013 (in Russ.).

17. Galeev A.G. Planning complex development of complex technical systems (Planirovanie kompleksnoi otrabotki slozhnykh tekhnicheskikh sistem). International Scientific Journal for Аlternative Energy and Ecology (ISJAEE), 2015;(9):76–85 (in Russ.).

18. Gribanov V.F. Methods of testing scientific and economic rocket and space complexes (Metody otrabotki nauchnykh i narodno-khozyaistvennykh raketnokosmicheskikh kompleksov). Moscow: Mashinostroenie Publ., 1995 (in Russ.).

19. Yblonskij A.A., Nikiforova V.M. Course of Theoretical Mechanics (Kurs teoreticheskoi mekhaniki). Moscow: KNORUS Publ., 2010, 608 p. (in Russ.).

20. Panovko YA.G. Fundamentals of Applied Theory of Oscillations and Shock (Osnovy prikladnoi teorii kolebanii i udara). Leningrad: Mashinostroenie Publ., 1976, 320 p. (in Russ.).

21. Volkov V.T., Yagodnikov D.A. Investigation and bench testing of rocket engines on solid fuel (Issledovanie i stendovaya otrabotka raketnykh dvigatelei na tverdom toplive). Moscow: Izd-vo MGTU im. N.EH. Baumana Publ., 2007 (in Russ.).

22. Sorokin R.E. Gas thermodynamics of rocket engines on solid fuel (Gazotermodinamika raketnykh dvigatelei na tverdom toplive). Moscow: Nauka Publ., 1967 (in Russ.).


Review

For citations:


Galeev A.G., Zaharov Yu.V., Rodchenko V.V., Michaylov D.N., Gusev E.V. SIMULATION OF PENETRATOR MOVEMENT DYNAMICS AT THE CONTACT WITH THE GROUND OF THE PLANET ON THE SHOCK TABLE. Alternative Energy and Ecology (ISJAEE). 2017;(13-15):77-90. (In Russ.) https://doi.org/10.15518/isjaee.2017.13-15.077-090

Views: 641


ISSN 1608-8298 (Print)