Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

ADSORPTION OF CO GAS MOLECULES ON SnO2 SURFACE

https://doi.org/10.15518/isjaee.2017.13-15.091-099

Abstract

This research is devoted to the investigation of the toxic CO gas adsorption mechanism on the tin dioxide (SnO2) semiconductor. We used density functional theory (DFT) to describe adsorption processes, and we found out that the Mars-van Krevelen (MvK) adsorption mechanism is not responsible for adsorption on (101) and (001) surface orientations of SnO2, unlike (110) and (100), where CO2 molecule forms and desorbs from the surfaces. After adsorption on (101) and (001) surface orientations, CO molecule bound to the surfaces and transfer electrons to it. The charge transfer was calculated using Bader charge analysis, which showed the amount of charge transferred to the (101) and (001) surfaces is larger than to the (110) and (100) surfaces. In the case of (001) surface orientation, we considered half and full surface coverage. It was shown that during full surface coverage only one molecule can be adsorbed and transfer 2e charge. Electronic density of states (eDoS) calculation was done to explain the increase of surface conductance.

About the Authors

V. M. Aroutiounian
Yerevan State University
Armenia

D.Sc. (physics and mathematics), Academician of National Academy of Sciences, Head of Semiconductor and Microelectronics Department,

1 Alex Manoogian str., Yerevan, 0025



H. A. Zakaryan
Yerevan State University
Armenia

Postgraduate, Semiconductor and Microelectronics Department,

1 Alex Manoogian str., Yerevan, 0025



References

1. Aroutiounian V. Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells. Int. J. Hydrog. Energy, 2007;32:1145–1158. doi:10.1016/j.ijhydene.2007.01.004.

2. Aroutiounian V.M. Metal oxide gas sensors decorated with carbon nanotubes. Lith. J. Phys., 2015;55:319–329. doi:10.3952/physics.v55i4.3230.

3. Aroutiounian V.M., Arakelyan V.M., Khachaturyan E.A., Shahnazaryan G.E., Aleksanyan M.S., Forro L., Magrez A., Hernadi K., Nemeth Z. Manufacturing and investigations of i-butane sensor made of SnO2/multiwall-carbon-nanotube nanocomposite. Sens. Actuators B Chem., ;173:890–896. doi:10.1016/j.snb.2012.04.039.

4. Batzill M., Diebold U. The surface and materials science of tin oxide. Prog. Surf. Sci., 2005;79:47–154. doi:10.1016/j.progsurf.2005.09.002.

5. Gong S., Liu J., Xia J., Quan L., Liu H., Zhou D. Gas sensing characteristics of SnO2 thin films and analyses of sensor response by the gas diffusion theory. Mater. Sci. Eng. B. 2009;164:85–90. doi:10.1016/j.mseb.2009.07.008.

6. Xu C., Jiang Y., Yi D., Sun S., Yu Z. Environment-dependent surface structures and stabilities of SnO2 from the first principles. J. Appl. Phys., 2012;111:063504. doi:10.1063/1.3694033.

7. Adamyan A., Adamyan Z., Aroutiounian V., Arakelyan A., Touryan K., Turner J. Sol–gel derived thin-film semiconductor hydrogen gas sensor. Int. J. Hydrog. Energy, 2007;32:4101–4108. doi:10.1016/j.ijhydene.2007.03.043.

8. Adamyan A.Z., Adamyan Z.N., Aroutiounian V.M. Study of sensitivity and response kinetics changes for SnO2 thin-film hydrogen sensors. Int. J. Hydrog. Energy, 2009;34:8438–8443. doi:10.1016/j.ijhydene.2009.08.001.

9. Nibbelke R.H., Campman M.A.J., Hoebink J.H.B.J., Marin G.B. Kinetic Study of the CO Oxidation over Pt/γ-Al2O3and Pt/Rh/CeO2/γ-Al2O3 in the Presence of H2O and CO2. J. Catal., 1997;171:358–373. doi:10.1006/jcat.1997.1785.

10. Langmuir I. The mechanism of the catalytic action of platinum in the reactions 2Co + O2= 2Co2 and 2H2+ O2= 2H2O. Trans. Faraday Soc., 1922;17:621– 654. doi:10.1039/tf9221700621.

11. Cheng C.C., Lucas S.R., Gutleben H., Choyke W.J., Yates J.T. Atomic hydrogen-driven halogen extraction from silicon(100): Eley-Rideal surface kinetics. J. Am. Chem. Soc., 1992;114:1249–1252. doi:10.1021/ja00030a020.

12. Mars P., van Krevelen D.W. Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci., 1954;3:41–59. doi:10.1016/S0009-2509(54)80005-4.

13. Sun Y., Lei F., Gao S., Pan B., Zhou J., Xie Y. Atomically Thin Tin Dioxide Sheets for Efficient Catalytic Oxidation of Carbon Monoxide. Angew. Chem. Int. Ed., 2013;52:10569–10572. doi:10.1002/anie.201305530.

14. Yu J., Zhao D., Xu X., Wang X., Zhang N. Study on RuO2/SnO2: Novel and Active Catalysts for CO and CH4 Oxidation. ChemCatChem., 2012;4:1122–1132. doi:10.1002/cctc.201200038.

15. Lu Z., Ma D., Yang L., Wang X., Xu G., Yang Z. Direct CO oxidation by lattice oxygen on the SnO2(110) surface: a DFT study. Phys Chem Chem Phys., 2014;16:12488–12494. doi:10.1039/C4CP00540F.

16. Melle-Franco M., Pacchioni G. CO adsorption on SnO2(110): cluster and periodic ab initio calculations. Surf. Sci., 2000;461:54–66. doi:10.1016/S0039-6028(00)00528-8.

17. Ciriaco F., Cassidei L., Cacciatore M., Petrella G. First principle study of processes modifying the conductivity of substoichiometric SnO2 based materials upon adsorption of CO from atmosphere. Chem. Phys., 2004;30:55–61. doi:10.1016/j.chemphys.2004.05.005.

18. Wang X., Qin H., Chen Y., Hu J. Sensing Mechanism of SnO2(110) Surface to CO: Density Functional Theory Calculations. J. Phys. Chem. C., 2014;118:28548–28561. doi:10.1021/jp501880r.

19. Xue Y.B., Tang Z.A. Density functional study of the interaction of CO with undoped and Pd doped SnO2(110) surface. Sens. Actuators B Chem., 2009;138:108–112. doi:10.1016/j.snb.2009.02.030.

20. Hohenberg P., Kohn W. Inhomogeneous Electron Gas. Phys. Rev., 1964;136:B864–B871. doi:10.1103/PhysRev.136.B864.

21. Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 1965;140:A1133–A1138. doi:10.1103/PhysRev.140.A1133.

22. Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B., 1993;47:558–561. doi:10.1103/PhysRevB.47.558.

23. Kresse G., Hafner J. Ab initio moleculardynamics simulation of the liquid-metal–amorphoussemiconductor transition in germanium. Phys. Rev. B., 1994;49:14251–14269. doi:10.1103/PhysRevB.49.14251.

24. Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B., 1996;54:11169–11186. doi:10.1103/PhysRevB.54.11169.

25. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996;77:3865–3868. doi:10.1103/PhysRevLett.77.3865.

26. Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B., ;13:5188–5192. doi:10.1103/PhysRevB.13.5188.

27. Henkelman G., Arnaldsson A., Jónsson H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci., 2006;36:354–360. doi:10.1016/j.commatsci.2005.04.010.

28. Sanville E., Kenny S.D., Smith R., Henkelman G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem., 2007;28:899–908. doi:10.1002/jcc.20575.

29. Tang W., Sanville E., Henkelman G. A gridbased Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter., 2009;21:084204. doi:10.1088/0953-8984/21/8/084204.

30. Rantala T.T., Rantala T.S., Lantto V. Surface relaxation of the (110) face of rutile SnO2. Surf. Sci., 1999;420:103–109. doi:10.1016/S0039-6028(98)00833-4.

31. Manassidis I., Gillan M.j. First-principles study of SnO2(110). Surf. Rev. Lett., 1994;1:491–494. doi:10.1142/S0218625X94000503.

32. Rantala T.T., Rantala T.S., Lantto V. Electronic structure of SnO2(110) surface. Mater. Sci. Semicond. Process., 2000;3:103–107. doi:10.1016/S1369-8001(00)00021-4.

33. Duan Y. Electronic properties and stabilities of bulk and low-index surfaces of SnO in comparison with SnO2: A first-principles density functional approach with an empirical correction of van der Waals interactions. Phys. Rev. B., 2008;77:045332-1 045332-22. doi:10.1103/PhysRevB.77.045332.

34. Kofstad P.K. Nonstoichiometry. Diffusion and Electrical Conductivity in Binary Metal Oxides, WileyIntersciece, New York, 1972


Review

For citations:


Aroutiounian V.M., Zakaryan H.A. ADSORPTION OF CO GAS MOLECULES ON SnO2 SURFACE. Alternative Energy and Ecology (ISJAEE). 2017;(13-15):91-99. https://doi.org/10.15518/isjaee.2017.13-15.091-099

Views: 833


ISSN 1608-8298 (Print)