Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

ENSURING THE ENERGY SECURITY OF A RESIDENTIAL AREA ON THE BASIS OF AN ELECTRIC GENERATING PLANT OPERATING ON THE HEAT OF THE NETWORK WATER

https://doi.org/10.15518/isjaee.2017.13-15.111-122

Abstract

The paper deals with a new concept for the design of autonomous thermal stations based on the use of the heat of the network water to generate electricity and the drive of necessary equipment, including the power supply of pumps, automation schemes, water treatment, lighting, and other consumers. This creates the conditions for the safe operation of the entire energy supply system of a residential area in case of accidents or terrorist attacks. The new power plant does not need a fuel supply such as a diesel power plant because the source for the production of electric power is hot water, supplied to the heat station from the main heating pipelines of the thermal power station. Low-boiling fire-safe working bodies such as freons are proposed as the working medium of the electric generating steam power circuit. The essence of the new approach is considered in detail with the example of the proposed plant included in the central heating station (CHS): the thermal scheme of the modernized CHS is presented; basic elements are shown that make it possible to clarify the operation principle of the plant and the method for obtaining electricity from hot water (the source of heat is hot water that flows through the supply pipe from the heat network to the heat exchanger-steam generator of the working fluid). The efficiency of the new plant is estimated using an exergy diagram. The calculations showed the high exergetic efficiency of the new power plant, which makes its implementation extremely urgent and necessary.

It is shown that in addition to increasing reliability and solving the problem of security of power supply in the district, a new power plant is economically advantageous, since the cost of a unit of electricity generated for own needs is 3- 4 times cheaper than the purchase because of the absence of intermediaries and high exergy efficiency of the plant. 

About the Authors

V. G. Sister
Moscow Polytechnic University
Russian Federation

D.Sc. (engineering), Professor, Head of the Processes and Apparatuses of Chemical Technology Department, 

38 B. Semenovskaya str., Moscow, 107023



F. A. Polivoda
JSC “ENIN G.M. Krzhizhanovskogo”
Russian Federation

D.Sc. (engineering), Professor, Senior Researcher at the Laboratory of Unconventional Renewable Energy Sources,

19 Leninsky ave., Moscow, 119991



V. P. Scherbakov
Kosygin Russian State University
Russian Federation

Postgraduate,

33/1 Sadovnicheskaya str., Moscow, 117997



A. I. Yamchuk
Moscow Polytechnic University
Russian Federation

Senior Lecturer at the Processes and Apparatuses of Chemical Technology Department, 

38 B. Semenovskaya str., Moscow, 107023



L. A. Shatrov
Kosygin Russian State University
Russian Federation

Postgraduate,

33/1 Sadovnicheskaya str., Moscow, 117997



T. I. Nabatchikova
Moscow State University of railway engineering
Russian Federation

Magistrate Student,

9/9 Obraztsova str., Moscow, 127994



References

1. Sokolov Е.Ya. Heating and heating networks (Teplofikatsiya i teplovye seti). Moscow: MPEI Publ., 2001, 433 p. (in Russ.).

2. Brodyanskii V.M. Thermodynamic analysis of low-temperature processes (Termodinamicheskii analiz nizkotemperaturnykh protsessov). Moscow: MPEI Publ., 1966, 177 p. (in Russ.).

3. Rant Z. Exergie, ein Neues Wort für “Technische Arbeitsfähigkeit”. Forschung Ing., 1956;(1):7–36. (in Germ.).

4. Bonyashkevich F. Technical thermodynamics (Tekhnicheskaya termodinamika). Moscow: Gostekhizdat Publ., 1956, 485 p. (in Russ.).

5. Bonyashkevich F. Technical working capacity of thermodynamic systems (Tekhnicheskaya rabotosposobnost' termodinamicheskikh sistem). Moscow: Gostekhizdat Publ., 1958, 137 p. (in Russ.).

6. Voskresenskii K.D., Novikov I.I. Applied thermodynamics and heat transfer (Prikladnaya termodinamika i teploperedacha). Moscow: Atomizdat Publ., 1977, 336 p. (in Russ.).

7. Yantovskii E.I., Pustovalov Yu.V. Steam Compression Heat Pumping Units (Parokompressionnye teplonasosnye ustanovki). Moscow: Energoizdat Publ., 1982, 141p. (in Russ.).

8. Martynov A.V. Installations for the transformation of heat and cooling (Ustanovki dlya transformatsii tepla i okhlazhdeniya). Moscow: Energoatomizdat Publ., 1989, 197 p. (in Russ.).

9. Field A.A. Heat pump progress in Europe. Heat. and Vent. Eng., 1978;52(610):5–8. (in Eng.).

10. Jacobowsky H. Wärmepumpe zum Wärme und Kalteerzeugung. Elektrowärme Techn. Aufbau, 1977;35(A3):132–141 (in Germ.).

11. Wegmann H. Abwärme. Fernwärme.Wärmepumpen. Energie, 1978;30(5):172–173 (in Germ.).

12. Sister V.G., Ivanikova E.M., Polivoda F.A., Velichkina L.A. Autonomous water closed system of district heating (Avtonomnaya vodyanaya zakrytaya sistema tsentralizovannogo teplosnabzheniya). Patent 2484379 Russian Federation, IPC 51 F24D 3/00 (2006.01). Applicant and patent holder LLC “National Innovative Company”, no. 2011139510/12; bulletin 16 (10.06.2013). (in Russ.).

13. Polivoda F.A., Shchebakov V.P., Morozova Yu.V., Yamchuk A.I. The concept of an autonomous urban district of power supply with a system of distributed power generation based on low-potential power plants (LPPP) and small hydro turbines (Kontseptsiya avtonomnogo gorodskogo raiona energosnabzheniya s sistemoi raspredelennoi elektrogeneratsii na baze nizkopotentsial'nykh energoustanovok (NES) i malykh gidroturbin). Industrial power engineering (Promyshlennaya energetika). 2013;(7):5–8 (in Russ.).

14. Thermodynamic diagrams of i-lgP refrigerants (Termodinamicheskie diagrammy i-lgP khladagentov). Moscow: AVISANKO Publ., 2003, 50 p. (in Russ.).

15. Pyrkov V.V. (Sovremennye teplovye punkty. Avtomatika i regulirovanie). Kiev: II Subsidiary “These things”, 2007, 252 p. (in Ukr.).

16. Building regulations 2.04.01-85. Internal water supply and sewerage of buildings (Vnutrennii vodoprovod i kanalizatsiya zdanii). Intr. 1986-07-01. Moscow: Stroyizdat Publ., 1986 (in Russ.).

17. Sister V.G., Ivannikova E.M., Polivoda F.A., Yamchuk A.I. The technology of creating energyefficient thermal networks with devices for generating electricity at waste heat (Tekhnologiya sozdaniya energoeffektivnykh teplovykh setei s ustroistvami generatsii elektroenergii na sbrosnoi teplote). Scientific Herald of the Moscow State Mining University. 2013;(12):30–35 (in Russ.).

18. Sister, V.G., Ivannikova E.M., Polivoda F.A., Yamchuk A.I., Shcherbakov V.P. Method for calculating and optimizing the efficiency of a two-pipe heat network (Metodika rascheta i optimizatsii KPD dvukhtrubnoi teplovoi seti). Energy security and energy saving (Energobezopasnost' i energosberezhenie). 2012;5(47):18–23 (in Russ.).

19. Karno S. The second law of thermodynamics. Collection of works (Vtoroe nachalo termodinamiki. Sbornik rabot). GTTI Publ., 1934 (in Russ.).

20. Polivoda A.I., Polivoda F.A., Sokolovskii R.I. Experience in the development of heat insulation made of polyurethane foam “Bion” (Opyt razrabotki teploizolyatsii iz penopoliuretana marki “Bion”). Heat supply news (Novosti teplosnabzheniya). 2009; (5):45–48 (in Russ.).

21. Hoven M. Energy Project and Management. The Economic Development Institute of the World Bank, 1993 (in Eng.).


Review

For citations:


Sister V.G., Polivoda F.A., Scherbakov V.P., Yamchuk A.I., Shatrov L.A., Nabatchikova T.I. ENSURING THE ENERGY SECURITY OF A RESIDENTIAL AREA ON THE BASIS OF AN ELECTRIC GENERATING PLANT OPERATING ON THE HEAT OF THE NETWORK WATER. Alternative Energy and Ecology (ISJAEE). 2017;(13-15):111-122. (In Russ.) https://doi.org/10.15518/isjaee.2017.13-15.111-122

Views: 627


ISSN 1608-8298 (Print)