PROTON-EXCHANGE MEMBRANES BASED ON HETEROPOLY COMPOUNDS FOR LOW TEMPERATURE FUEL CELLS
https://doi.org/10.15518/isjaee.2015.04.02
Abstract
The review has analyzed the papers relative to heteropoly compounds, as solid proton conductors, for modification of polymer proton exchange membranes for their usage as low temperature fuel cells. The electrolyte functions and requirements, the structure and transport properties of perfluorinated proton exchange membranes which are the main candidates for practical applications are briefly considered. The main disadvantages of these membranes limiting their use are also highlighted. A special attention is given to the structure and properties of heteropoly compounds. The properties of heteropoly acids (phospho- and silicotungstic) containing anion with Keggin structure are discussed in details. In the main part of the review the methods of the preparation of the composite membranes based on perfluorinated and aromatic polymers and heteropoly compounds, the influence of the nature and content of the heteropoly compounds on their transport properties are analyzed. It is shown that the modification of polymer membranes by heteropoly compounds is one of the most promising methods to improve membranes performance. Due to its own high proton conductivity introduction of heteropoly compounds into polymer electrolytes in some cases can significantly improve proton conductivity, particularly at elevated temperatures, and reduce the methanol permeability. In the final part of the review the data on the use of composite polymer electrolytes with heteropoly compounds in the fuel cells and the influence of heteropoly compounds on the performance of the electrochemical devices are analyzed. It is shown that introduction of dopants inside of membrane can significantly increase both the operating temperature and performance of the fuel cell.
About the Authors
Y. A. DobrovolskyRussian Federation
D. Sci. (Chemistry), Professor, Head of Department of IPCP RAS
A. I. Chikin
Russian Federation
PhD (Chemistry), Junior Research Scientist of IPCP RAS
E. A. Sanginov
Russian Federation
PhD (Chemistry), Senior Researcher of IPCP RAS
A. V. Chub
Russian Federation
engineer of IPCP RAS
References
1. Carrette L., Friedrich K.A., Stimming U. Fuel cells – fundamentals and applications. Fuel Cells, 2001, vol. 1, no. 1, pp. 5–39.
2. Aricò A.S., Srinivasan S., Antonucci V. DMFCs: from fundamental aspects to technology development. Fuel Cells, 2001, vol. 1, no. 1, pp. 133–161.
3. Jannasch P. Recent developments in high-temperature proton conducting polymer electrolyte membranes. Current Opinion in Colloid and Interface Science, 2003, vol. 8, no. 1, pp. 96–102.
4. Rikukawa M., Sanui K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci, 2000, vol. 25, no. 10, pp. 1463–1502.
5. Rozi`ere J., Jones D.J. Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu. Rev. Mater. Res, 2003, vol. 33, pp. 503–55.
6. Li Q.F, He R.H., Jensen J.O., Bjerrum N.J. Ap-proaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem. Mater., 2003, vol. 15, no. 26, pp. 4896–4915.
7. Hickner M.A., Ghassemi H., Kim Y.S., et al. Al-ternative polymer systems for proton exchange mem-branes (PEMs). Chem. Rev., 2004, vol. 104, no. 10, pp. 4587–4612.
8. Dobrovolsky Yu.A., Volkov E.V., Pisareva A.V., et al. Protonoobmennye membrany dlâ vodorodno-vozdušnyh toplivnyh èlementov. Ros. Him. Ž., 2006, vol. L, no. 6, pp. 95–104 [in Russ.].
9. Neburchilov V., Martin J., Wang H., Zhang J. A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources, 2007, vol. 169, pp. 221–238.
10. Dobrovolsky Yu.A., Jannasch P., Lafitte B., et al. Achievements in the Field of Proton-Conductive Portion Electrolyte Membranes. Russ. J. Electrochem., 2007, vol. 43, no. 5, pp. 489–501.
11. Dobrovolsky Yu.A., Sanginov E.A., Rusanov A.L. Protonoobmennye membrany dlâ nizkotemperaturnyh èlektrohimičeskih ustrojstv. International Scientific Journal “Alʹternativnaâ ènergetika i èkologiâ” (IS-JAEE), 2009, vol. 76, no. 8, pp. 112–132 [in Russ.].
12. Dobrovolsky Yu.A., Sanginov E.A., Rusanov A.L. Proton-exchange membranes for low temperature electrochemical devices. Fast proton-ion transport com-pounds, Ed.: Ubavka B. Mioč and Milorad Davidović. Kerala, India: Transworld Research Network, 2010, pp. 81–126.
13. Peighambardoust S.J., Rowshanzamir S., Amjadi M. Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrogen Energy, 2010, vol. 35, no. 17, pp. 9349–9384.
14. Thiam H.S., Daud W.R.W., Kamarudin S.K., et al. Overview on nanostructured membrane in fuel cell applications. Int. J. Hydrogen Energy, 2011, vol. 36, no. 4, pp. 3187–3205.
15. Yaroslavtsev A.B., Dobrovolsky Yu.A., Shaglaeva N.S., et al. Nanostructured materials for low-temperature fuel cells. Russ. Chem. Rev., 2012, vol. 81, no. 3, pp. 191–220.
16. Harper G.H., Norman G.R. Fluorocarbon sulfonyl fluorides. Patent 3041317 USA MKIZ C08F28/00, C07C309/81. Chem. Abstracts, 1963, vol. 58, p. 451a.
17. Connolly D.J., Gresham W.F. Fluorocarbon vinyl ether polymers. Patent 3282875 USA MKIZ C08F28/00, C07C309/82 Chem. Abstracts, 1966, vol. 66, p. 11326.
18. Panshin Yu.A., Malkevich S.G., Dunaevskaya C.S. Ftoroplasty. Leningrad: Himiâ, 1978 [in Russ.].
19. Souzy R., Ameduri B. Functional fluoropolymers for fuel cell membranes. Prog. Polym. Sci., 2005, vol. 30, no. 6, pp. 644–687.
20. Ivanchev S.S., Myakin S.V. Polymer membranes for fuel cells: manufacture, structure, modification, properties. Russ. Chem. Rev., 2010, vol. 79, no. 2, pp. 101–117.
21. Mauritz K.A., Moore R.B. State of understanding of Nafion. Chem. Rev., 2004, vol. 104, no. 10, pp. 4535–4585.
22. Yang Y., Siu A., Peckham T.J., Holdcrof S. Structural and morphological features of acid-bearing polymers for pem fuel cells. Adv. Polym. Sci., 2008, vol. 215, pp. 55–126.
23. Gierke T.D., Munn G.E., Wilson F.C. The mor-phology in Nafion perfluorinated membrane products, as determined by wide- and small- angle X-ray studies. J. of Polym. Sci.: Polym. Phys. Ed., 1981, vol. 19, pp. 1687–1704.
24. Hsu W.Y., Gierke T.D. Ion-transport and cluster-ing in Nafion perfluorinated membranes. J. Membrane Sci., 1983, vol. 13, no. 3, pp. 307–326.
25. Gebel G. Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer, 2000, vol. 41, No. 15. P. 5829–5838.
26. Kreuer K.D. On the development of proton con-ducting polymer membranes for hydrogen and methanol fuel cells. J. Membrane Sci., 2001, vol. 185, no. 1, pp. 29–39.
27. McLean R.S., Doyle M., Sauer B.B. High-resolution imaging of ionic domains and crystal mor-phology in ionomers using AFM techniques. Macromol-ecules, 2000, vol. 33, no. 17, pp. 6541–6550.
28. Zawodzinski T.A., Neeman Jr.M., Sillerud L.O., Cottesfeld S. Determination of water dlffusion coeff icients in perfluorosulfonate ionomeric membranes. J. Phys. Chem., 1991, vol. 95, no. 15, pp. 6040–6044.
29. Meier-Haack J., Taeger A., Vogel C., et al. Membranes from sulfonated block copolymers for use in fuel cells. Sep. Purif. Technol., 2005. vol. 41, no. 3, pp. 207–220.
30. Higashihara T., Matsumoto K., Ueda M. Sul-fonated aromatic hydrocarbon polymers as proton ex-change membranes for fuel cells. Polymer, 2009, vol. 50, no. 23, pp. 5341–5357.
31. Gürsel S.A., Gubler L., Gupta B., Scherer G.G. Radiation grafted membranes. Adv. Polym. Sci., 2008, vol. 215, pp. 157–217.
32. Yaroslavtsev A.B. Composite materials with ionic conductivity: from inorganic composites to hybrid membranes. Russ. Chem. Rev., 2009, vol. 78, no. 11, pp. 1013–1029.
33. Ahmad H., Kamarudin S.K., Hasran U.A., Daud W.R.W. Overview of hybrid membranes for direct-methanol fuel-cell applications. Int. J. Hydrogen Energy, 2010, vol. 35, no. 5, pp. 2160–2175.
34. Nikitina E.A. Geteropolisoedineniâ. Moscow: Goshimizdat Publ., 1962, 422 p. [in Russ.]
35. Keggin J.P. The Structure and Formula of 12-Phosphotungstic Acid. Proc. Roy. Soc., 1934, vol. A144, pp. 75–100.
36. Himeno S., Takamoto M., Ueda T. Synthesis, characterisation and voltammetric study of β-Keggin-type [PW12O40]3- complex. J. Electroanal. Chem., 1999, vol. 465, no. 2, pp. 129–135.
37. Korosteleva E.A., Leonova L.S., Ukshe E.A. Pro-tonic conductivities of heteropoly compounds as func-tions of their degree of hydration. Soviet Electrochem., 1987, vol. 23, pp. 1266–1270.
38. Mioc U.B., Todorovic M.R., Davidovic M. et al. Differential impedance analysis of solid oxide materials. Solid State Ionics, 2005, vol. 176, no. 25–28, pp. 2005–2009.
39. Vakulenko A., Dobrovolsky Yu., Leonova L. et al. Protonic conductivity of neutral and acidic silicotung-states. Solid State Ionics, 2000, vol. 136–137, pp. 285–290.
40. Chikin A.I., Chernyak A.V., Jin Zh. et al. Mobility of protons in 12-phosphotungstic acid and its acid and neutral salts. J. Solid State Electrochem., 2012, vol. 16, no. 8, pp. 2767–2775.
41. Mioc U., Davidovic M., Tjapkin N. et al. Equilib-rium of the protonic species in hydrates of some hetero-polyacids at elevated temperatures. Solid State Ionics, 1991, vol. 46, no. 1–2, pp. 103–109.
42. Nakamura O., Kodama T., Ogino I., Miyake Y. Proton permselective solid-state member and apparatus utilizing said permselective member. Patent 4024036 USA MKIZ H01M8/10, C25B13/04, H01M10/36. 1977.
43. Mikhailenko S.D., Kaliaguine S., Moffat J.B. Electrical impedance studies of the ammonium salt of 12-tungstophosphoric acid in the presence of liquid water. Solid State Ionics, 1997, vol. 99, no. 3–4, pp. 281–286.
44. Highfield J.G., Moffat J.B. Characterization of 12-tungstophosphoric acid and related salts using photo-acoustic spectroscopy in the infrared region: I. Thermal stability and interactions with ammonia. J. Catal., 1984, vol. 88, no. 1, pp. 177–187.
45. Moffat J.B. Implicit and explicit microporosity in heteropoly oxometalates. J. Catal., 1989, vol. 52, no. 1, pp. 169–191.
46. Dobrovolsky Yu., Leonova L., Vakulenko A. Thermodynamic equilibria and kinetic reversibility of the solid electrolyte/electron conductor/gas boundary at low temperature. Solid State Ionics, 1996, vol. 86–88, pp. 1017–1021.
47. Treglazov I., Leonova L., Dobrovolsky Yu. et al. Electrocatalytic effects in gas sensors based on low–temperature superprotonics. Sensors & Actuators B, 2005, vol. 106, no. 1, pp. 164–169.
48. Nakamura O., Adachi M., Kawai M. et al. Copper (I) oxide as oxygen electrode catalyst in a solid elec-trolyte, H3Mo12PO40•29H2O, fuel cell. Materials Research Bulletin, 1985, vol. 20, no. 3, pp. 293–297.
49. Nakamura O., Ogino I., Adachi M. Copper oxide as cathode catalyst. Patent 4554224 USA MKIZ H01M8/10, H01M4/90. / 1985.
50. Giordano N., Staiti P., Hocevar S., Arico A.S. High performance fuel cell based on phosphotungstic acid as proton conducting electrolyte. Electrochim. Acta, 1996, vol. 41, no. 3, pp. 397–403.
51. Staiti P., Hocevar S., Giordano N. Fuel cells with H3PW12O40 29H2O as solid electrolyte. Int. J. Hydrogen Energy, 1997, vol. 22, no. 8, pp. 809–814.
52. Staiti P., Freni S., Hocevar S. Synthesis and char-acterization of proton-conducting materials containing dodecatungstophosphoric and dodecatungstosilic acid supported on silica. J. Power Sources, 1999, vol. 79, no. 2, pp. 250–255.
53. Malhotra S., Datta R. Membrane-supported non-volatile acidic electrolytes allow higher temperature op-eration of proton-exchange membrane fuel cells. J. Elec-trochem. Soc., 1997, vol. 144, pp. L23–L26.
54. Xu W., Lu T., Liu C., Xing W. Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells. Electrochim. Acta, 2005, vol. 50, no. 16–17, pp. 3280–3285.
55. Tazi B., Savadogo O. Parameters of PEM fuel-cells based on new membranes fabricated from Nafion®, silicotungstic acid and thiophene. Electrochim. Acta, 2000, vol. 45, no. 25–26, pp. 4329–4339.
56. Dimitrova P., Friedrich K.A., Stimming U., Vogt B. Modified Nafion®-based membranes for use in direct methanol fuel cells. Solid State Ionics, 2002, vol. 150, no. 1–2, pp. 115–122.
57. Ramani V., Kunz H., Fenton J. Stabilized hetero-polyacid/Nafion composite membranes for elevated temperature/low relative humidity PEFC operation. Elec-trochim. Acta, 2005, vol. 50, no. 5, pp. 1181–1187.
58. Staiti P., Arico A.S., Baglio V., et al. Hybrid Nafion–silica membranes doped with heteropolyacids for application in direct methanol fuel cells. Solid State Ionics, 2001, vol. 145, no. 1–4, pp. 101–107.
59. Arico A., Baglio V., Di Blasi A., et al. Influence of the acid–base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells. Solid State Ionics, 2003, vol. 161, no. 3–4, pp. 251–265.
60. Kim H.-J., Shul Y.-G., Han H. Sulfonic-functionalized heteropolyacid–silica nanoparticles for high temperature operation of a direct methanol fuel cell. J. Power Sources, 2006, vol. 158, no. 1, pp. 137–142.
61. Ramani V., Kunz H.R., Fenton J.M. Metal dioxide supported heteropolyacid/Nafion® composite mem-branes for elevated temperature/low relative humidity PEFC operation. J. Membrane Sci., 2006, vol. 279, no. 1–2, pp. 506–512.
62. Mahreni A., Mohamad A.B., Kadhum A.A.H. et al. Nafion/silicon oxide/phosphotungstic acid nanocom-posite membrane with enhanced proton conductivity. J. Membrane Sci., 2009, vol. 327, no. 1–2, pp. 32–40.
63. Safronova E.Yu., Stenina I.A., Yaroslavtsev A.B. Synthesis and characterization of MF-4SK+SiO2 hybrid membranes modified with tungstophosphoric heteropol-yacid. Russ. J. Inorg. Chem., 2010, vol. 55, no. 1, pp. 13–17.
64. Wang, L. Yi B.L., Zhang H.M., Xing D.M. Cs2.5H0.5PWO40/SiO2 as addition self-humidifying com-posite membrane for proton exchange membrane fuel cells. Electrochim. Acta, 2007, vol. 52, no. 17, pp. 5479–5483.
65. Ramani V., Kunz H.R., Fenton J.M. Stabilized composite membranes and membrane electrode assem-blies for elevated temperature/low relative humidity PEFC operation. J. Power Sources, 2005, vol. 152, pp. 182–188.
66. Amirinejad M., Madaeni S.S., Navarra M.A., et al. Preparation and characterization of phosphotungstic acid-derived salt/Nafion nanocomposite membranes for proton exchange membrane fuel cells. J. Power Sources, 2011, vol. 196, no. 3, pp. 988–998.
67. Xiang Y., Yang M., Zhang J., et al. Phosphotung-stic acid (HPW) molecules anchored in the bulk of Nafion as methanol-blocking membrane for direct methanol fuel cells. J. Membrane Sci., 2011, vol. 368, no. 1–2, pp. 241–245.
68. Gerasimova E.V., Safronova E.Yu., Volodin A.A. et al. Electrocatalytic properties of the nanostructured electrodes and membranes in hydrogen-air fuel cells. Catalysis Today, 2012, vol. 193, pp. 81-86.
69. Ramani V., Kunz H.., Fenton J. Investigation of Nafion®/HPA composite membranes for high tempera-ture/low relative humidity PEMFC operation. J. Mem-brane Sci., 2004, vol. 232, no. 1–2, pp. 31–44.
70. Ramani V., Kunz H., Fenton J. Effect of particle size reduction on the conductivity of Nafi-on/phosphotungstic acid composite membranes // J. Membrane Sci. 2005. Vol. 266, No. 1–2. P. 110–114.
71. Sacca A., Carbone A., Pedicini R., et al. Phos-photungstic Acid Supported on a Nanopowdered ZrO2 as a Filler in Nafion-Based Membranes for Polymer Elec-trolyte Fuel Cells. Fuel Cells, 2008, vol. 8, no. 3–4, pp. 225–235.
72. Zaidi S.M., Mikhailenko S.D., Robertson G.P., et al. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell ap-plications. J. Membrane Sci., 2000, vol. 173, no. 1, pp. 17–34.
73. Ponce M., Prado L.A.S.A., Ruffmann B., et al. Reduction of methanol permeability in polyetherketone–heteropolyacid membranes. J. Membrane Sci., 2003, vol. 217, no. 1–2, pp. 5–15.
74. Ponce M., Prado L.A.S.A., Silva V., Nunes S.P. Membranes for direct methanol fuel cell based on modi-fied heteropolyacids. Desalination, 2004, vol. 162, pp. 383–391.
75. Prado L.A.S.A., Goerigk G., Ponce M. L. et al. Characterization of proton-conducting organic-inorganic polymeric materials by ASAXS. J. Polym. Sci., Part B: Polym. Phys., 2005, vol. 43, no. 21, pp. 2981–2992.
76. Prado L.A.S.A., Ponce M.L., Funari S.S. et al. SAXS/WAXS characterization of proton-conducting polymer membranes containing phosphomolybdic acid. J. Non-Crystalline Solids, 2005, vol. 351, no. 27–29, pp. 2194–2199.
77. Ahmad M.I., Zaidi S.M.J., Rahman S.U. Proton conductivity and characterization of novel composite membranes for medium-temperature fuel cells. Desali-nation, 2006, vol. 193, no. 1–3, pp. 387–397.
78. Prado L.A.S.A., Ponce M.L., Goerigk G., et al. Analysis of proton-conducting organic–inorganic hybrid materials based on sulphonated poly(ether ether ketone) and phosphotungstic acid via ASAXS and WAXS. J. Non-Crystalline Solids, 2009, vol. 355, no. 1, pp. 6–11.
79. Ismail A.F., Othman N.H., Mustafa A. Sulfonated polyether ether ketone composite membrane using tung-stosilicic acid supported on silica–aluminium oxide for direct methanol fuel cell (DMFC). J. Membrane Sci., 2009, vol. 329, no. 1–2, pp. 18–29.
80. Celso F., Mikhailenko S.D., Kaliaguine S., et al. SPEEK based composite PEMs containing tungstophos-phoric acid and modified with benzimidazole derivatives. J. Membrane Sci., 2009, vol. 336, no. 1–2, pp. 118–127.
81. Colicchio I., Wen F., Keul H. et al. Sulfonated poly(ether ether ketone)–silica membranes doped with phosphotungstic acid. Morphology and proton conductivity. J. Membrane Sci., 2009, vol. 326, no. 1, pp. 45–57.
82. Fontananova E., Trotta F., Jansen J.C., Drioli E. Preparation and characterization of new non-fluorinated polymeric and composite membranes for PEMFCs. J. Membrane Sci., 2010, vol. 348, no. 1–2. P. 326–336.
83. Dogan H., Inan T.Y., Unveren E., Kaya M. Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications. Int. J. Hydrogen Energy, 2010, vol. 35, no. 15, pp. 7784–7795.
84. Smitha B., Sridhar S., Khan A.A. Proton conduct-ing composite membranes from polysulfone and hetero-polyacid for fuel cell applications. J. Polym. Sci., Part B: Polym. Phys., 2005, vol. 43, no. 12, pp. 1538–1547.
85. Tan A.R., Magno de Carvalho L., de Souza Gomes A. Nanostructured Proton-Conducting Membranes for Fuel Cell Applications. Macromol. Symp., 2005, vol. 229, no. 1, pp. 168–178.
86. Kim Y.S., Wang F., Hickner M., et al. Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite mem-branes for higher temperature fuel cell applications. J. Membrane Sci., 2003, vol. 212, no. 1–2, pp. 263–282.
87. Zhang H., Pang J., Wang D. et al. Sulfonated poly(arylene ether nitrile ketone) and its composite with phosphotungstic acid as materials for proton exchange membranes. J. Membrane Sci., 2005, vol. 264, no. 1–2, pp. 56–64.
88. Zhang H., Zhu B., Xu Y. Composite membranes of sulfonated poly(phthalazinone ether ketone) doped with 12-phosphotungstic acid (H3PW12O40) for proton exchange membranes. Solid State Ionics, 2006, vol. 177, no. 13–14, pp. 1123–1128.
89. Wang Z., Ni H., Zhao C. et al. Investigation of sulfonated poly(ether ether ketone sul-fone)/heteropolyacid composite membranes for high temperature fuel cell applications. J. Polym. Sci., Part B: Polym. Phys., 2006, vol. 44, no. 14, pp. 1967–1978.
90. Tan A.R., de Carvalho L.M., de Ramos Filho F. G., de Souza Gomes A. Nanocomposite Membranes based on sulfonated poly(etheretherketone) structured with modified silica for direct ethanol fuel cell. Macromol. Symp., 2006, vol. 245–246, no. 1, pp. 470–475.
91. Xue S., Yin G., Cai K., Shao Y. Permeabilities of methanol, ethanol and dimethyl ether in new composite membranes: A comparison with Nafion membranes. J. Membrane Sci., 2007, vol. 289, no. 1–2, pp. 51–57.
92. Jang W., Choi S., Lee S. et al. Characterizations and stability of polyimide–phosphotungstic acid compo-site electrolyte membranes for fuel cell. Polym. Degrad. Stab., 2007, vol. 92, no. 7, pp. 1289–1296.
93. Yamada M., Honma I. Heteropolyacid-encapsulated self-assembled materials for anhydrous proton-conducting electrolytes. J. Phys. Chem. B., 2006, vol. 110, no. 41, pp. 20486–20490.
94. Choi J.K., Lee D.K., Kim Y.W. et al. Composite polymer electrolyte membranes comprising triblock co-polymer and heteropolyacid for fuel cell applications. J. Polym. Sci., Part B: Polym. Phys., 2008, vol. 46, no. 7, pp. 691–701.
95. Gomez-Romero P., Asensio J., Borros S. Hybrid proton-conducting membranes for polymer electrolyte fuel cells phosphomolybdic acid doped poly(2,5-benzimidazole)—(ABPBI-H3PMo12O40). Electrochim. Acta, 2005, vol. 50, no. 24, pp. 4715–4720.
96. Staiti P., Minutoli M. Influence of composition and acid treatment on proton conduction of composite polybenzimidazole membranes. J. Power Sources, 2001, vol. 94, no. 1, pp. 9–13.
97. He R., Li Q., Xiao G., Bjerrum N.J. Proton con-ductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. J. Membrane Sci., 2003, vol. 226, no. 1–2, pp. 169–184.
98. Staiti P. Proton conductive membranes based on silicotungstic acid/silica and polybenzimidazole. Mater. Lett., 2001, vol. 47, no. 4–5, pp. 241–246.
99. Staiti P., Minutoli M. Influence of composition and acid treatment on proton conduction of composite polybenzimidazole membranes. J. Power Sources, 2001, vol. 94, no. 1, pp. 9–13.
100. Honma I., Takeda Y., Bae J.M. Protonic con-ducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules. Solid State Ionics, 1999, vol. 120, no. 1–4, pp. 255–264.
101. Honma I., Nomura S., Nakajima H. Protonic conducting organic/inorganic nanocomposites for poly-mer electrolyte membrane. J. Membrane Sci., 2001, vol. 185, no. 1, pp. 83–94.
102. Lavrencic Stangar U., Groselj N., Orel B., et al. Proton-conducting sol–gel hybrids containing heteropoly acids. Solid State Ionics, 2001, vol. 145, no. 1–4, pp. 109–118.
103. Nakajima H., Nomura S., Sugimoto T., et al. High temperature proton conducting organic/inorganic nanohybrids for polymer electrolyte membrane. J. Elec-trochem. Soc., 2002, vol. 149, no. 8, pp. A953–A959.
104. Vernon D.R., Menga F., Dec S.F. et al. Synthesis, characterization, and conductivity measurements of hybrid membranes containing a mono-lacunary hetero-polyacid for PEM fuel cell applications. J. Power Sources, 2005, vol. 139, no. 1–2, pp. 141–151.
105. Mustarelli P., Carollo A., Grandi S., et al. Com-posite Proton-Conducting Membranes for PEMFCs. Fuel Cells, 2007, vol. 7, no. 6, pp. 441–446.
106. Gong J., Li X.-D., Shao C.-L., et al. Photochromic and thermal properties of poly(vinyl alcohol)/H6P2W18O62 hybrid membranes. Mater. Chem. Phys., 2003, vol. 79, no. 1, pp. 87–93.
107. Lin C.W., Thangamuthu R., Yang C.J. Proton-conducting membranes with high selectivity from phos-photungstic acid-doped poly(vinyl alcohol) for DMFC applications. J. Membrane Sci., 2005, vol. 253, no. 1–2, pp. 23–31.
108. Helen M., Viswanathan B., Murthy S.S. Fabri-cation and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and polyvi-nyl alcohol. J. Power Sources, 2006, vol. 163, no. 1, pp. 433–439.
109. Helen M., Viswanathan B., Murthy S. Synthesis and characterization of composite membranes based on α-zirconium phosphate and silicotungstic acid. J. Mem-brane Sci., 2007, vol. 292, no. 1–2, pp. 98–105.
110. Lakshminarayana G., Nogami M. Synthesis and characterization of proton conducting inorganic-organic hybrid nanocomposite membranes based on mixed PWA-PMA-TEOS-GPTMS-H3PO4-APTES for H2/O2 fuel cells. J. Phys. Chem. C, 2009, vol. 113, no. 32, pp. 14540–14550.
111. Helen M., Viswanathan B., Murthy S.S. Poly(vinyl alcohol)–polyacrylamide blends with cesium salts of heteropolyacid as a polymer electrolyte for direct methanol fuel cell applications. J. Appl. Polym. Sci., 2010, vol. 116, no. 6, pp. 3437–3447.
112. Bhat S.D., Sahu A.K., Jalajakshi A., et al. PVA–SSA–HPA mixed-matrix-membrane electrolytes for DMFCs. J. Electrochem. Soc., 2010, vol. 157, no. 10, pp. B1403–B1412.
113. Honma I., Nakajima H., Nishikawa O., et al. Amphiphilic organic/inorganic nanohybrid macromole-cules for intermediate-temperature proton conducting electrolyte membranes. J. Electrochem. Soc., 2002, vol. 149, no. 10, pp. A1389–A1392.
114. Honma I., Nakajimaa H., Nishikawa O., et al. Organic/inorganic nano-composites for high temperature proton conducting polymer electrolytes. Solid State Ion-ics, 2003, vol. 162–163, pp. 237–245.
115. Cui Z., Liu Ch, Lu T., Xing W. Polyelectrolyte complexes of chitosan and phosphotungstic acid as pro-ton-conducting membranes for direct methanol fuel cells. J. Power Sources, 2007, vol. 167, no. 1, pp. 94–99.
116. Zukowska G., Stevens J.R., Jeffrey K.R. Anhy-drous gel electrolytes doped with silicotungstic acid. Electrochim. Acta, 2003, vol. 48, no. 14–16, pp. 2157–2164.
117. Fenton J.M., Kunz H.R., Cutlip M.B., Lin J.C. Perfluorinated sulfonic acid polymers such as nafion.rtm. and other ion exchange materials incorporated into films to form composite membranes; optionally a noble metal is dispersed within the matrix. Patent 6465136 USA MKIZ C25B13/08, H01M4/88, H01M4/86, B05D5/12, H01M4/96, H01M8/10, C08J5/22, B01D69/12, H01M6/18, H01M4/92, B01D69/14, H01M8/02. 2002.
118. Sauk J., Byun J., Kim H. Composite Nafi-on/polyphenylene oxide (PPO) membranes with phos-phomolybdic acid (PMA) for direct methanol fuel cells. J. Power Sources, 2005, vol. 143, pp. 136–141.
119. Malers J.L., Sweikart M.A., Horan J.L., et al. Studies of heteropoly acid/polyvinylidenedifluoride–hexafluoroproylene composite membranes and implica-tion for the use of heteropoly acids as the proton con-ducting component in a fuel cell membrane. J. Power Sources, 2007, vol. 172, pp. 83-88.
Review
For citations:
Dobrovolsky Y.A., Chikin A.I., Sanginov E.A., Chub A.V. PROTON-EXCHANGE MEMBRANES BASED ON HETEROPOLY COMPOUNDS FOR LOW TEMPERATURE FUEL CELLS. Alternative Energy and Ecology (ISJAEE). 2015;(4):22-45. https://doi.org/10.15518/isjaee.2015.04.02