Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

COMPOSIT MATERIALS BASED ON AGRICULTURAL AND 5-HYDROXYMETHYLFURFUROL PRODUCTION WASTES AND POLYETHYLENE

https://doi.org/10.15518/isjaee.2017.19-21.116-125

Abstract

The composite materials based on secondary polyethylene and agricultural wastes (straw of various types) as filler were developed. The prospects of modifying the surface of the filler with resinous waste from the production of 5- hydroxymethylfurfural (5-HMF) from a vegetable source were shown, which is a versatile platform for obtaining valuable chemical products, including monomers for the production of polymers from renewable raw materials. At present, 5-HMF is produced quite successfully from various plant raw materials (sugar beet, Jerusalem artichoke, laminaria, etc.) However, the production of 5-HMF by acid catalyzed dehydration of polysaccharides is accompanied up to 10% of by-product resinous humic-like substances (hereinafter called the resin) formation. The ways of its utilization have of great practical interest. The presence of oligomeric chains with a large number of polar groups in the resin composition ensures its uniform distribution over the surface of hydrophilic filler particles, forming a polymer film, which significantly reduces the water absorption of the composite. Present research shows that as the content of the resin increases from 0% to 4%, the water absorption of composites containing 15 % of rice or wheat straw decreases by 3-5 times. On the other hand, the hydrophobic fragments of the oligomeric resin chains interact with the polyethylene matrix. As a result, the adhesion between the straw particles and the polyethylene increase, and the strength properties of the resulting composite materials increase too. The optimal ratio of components is 15% wheat straw, the ratio of straw / resin is 8-15%, 0.5-2% modifier. It should be noted that improvements in the properties of composite materials have been achieved by introduction of relatively small amounts of a modifier (0.5-2%). The resulting composites can be used as construction and waterproof materials.

About the Authors

I. I. Kashparov
Platov South-Russian State Polytechnic University (NPI)
Russian Federation
Ph.D. (engineering), Associate Professor


V. A. Klushin
Platov South-Russian State Polytechnic University (NPI)
Russian Federation
Ph.D. (engineering), Associate Professor


I. P. Vinokourov
Platov South-Russian State Polytechnic University (NPI)
Russian Federation
Postgraduate


A. F. Zubenko
Platov South-Russian State Polytechnic University (NPI)
Russian Federation
Ph.D. (engineering), Associate Professor


V. P. Kashparova
Platov South-Russian State Polytechnic University (NPI)
Russian Federation
Ph.D. (engineering), Associate Professor


N. V. Smirnova
Platov South-Russian State Polytechnic University (NPI)
Russian Federation
D.Sc. (chemistry), Prof.


References

1. About the statement of the priority directions of development of science, technologies and the equipment in the Russian Federation and the list of critical technologies of the Russian Federation (Ob utverzhdenii prioretetnykh napravleniyi razvitiya nauki, tekhnologii i tekhniki v Rossiiskoi Federatsii i perechnya kriticheskikh tekhnologii Rossiiskoi Federatsii) [E-resource]: the decree of the President of the Russian Federation of July 07, 2011 № 899 (an edition of December 16, 2015 № 623). – Access mode: Guarantor system (in Russ.).

2. Golubev I.G. et al. Retsikling of waste in agrarian and industrial complex: reference book(s) (Retsikling otkhodov v APK: spravochnik). Moscow: FGBNU of Rosinformagrotekh, 2011 (in Russ.).

3. Situation with food in the world (Polozhenie s prodovol'stviem v mire) [E-resource]. Available on: http://www.fao.org/worldfoodsituation/csdb/ru/. The title from the screen (08.08.2017) (in Russ.).

4. Azarov V.M. About use of straw in agriculture (Ob ispol'zovanii solomy v sel'skom khozyaistve). Vestnik Altaiskokgo gosudarstvennogo agrarnogo universiteta, 2003;1:40–41 (in Russ.).

5. Technology of biofuel production (Tekhnologiya proizvodstva biotopliva) [E-resource]. – Available on: http://www.infobio.ru/tiekhnologhiia-proizvodstvabiotopliva. The title from the screen (08.08.2017) (in Russ.).

6. Imorb K., Simasatitkul L., Arpornwichanop A. Analysis of synthesis gas production with a flexible H/CO ratio from rice straw gasification. Fuel, 2016;164:361–373 (in Eng.).

7. Searcy E., Flynn P.C.Flynn Processing of Straw/Corn Stover: Comparison of Life Cycle Emissions. International Journal of Green Energy, 2008;5:423–437 (in Eng.).

8. J. Jin Hu, Fei Yu, Yongwu Lu. Application of Fischer–Tropsch Synthesis in Biomass to Liquid. Conversion Catalysts, 2012:303–326. DOI:10.3390/catal2020303 (in Eng.).

9. Panthapulakkal S., Zereshkian A.S., Sain M. Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites. Bioresource Technology, 2006;97:265–272 (in Eng.).

10. Zhang W. et all. Physical and Mechanical Properties of Modified Wheat Straw-Filled Polyethylene Composites. BioResources; 2016;11:4472–4484 (in Eng.).

11. Ali A., Shaker K., Nawab Ya. et all. Hydrophobic treatment of natural fibers and their composites – A review. J. of Industrial Textiles, 2016:1–31 (in Eng.).

12. Schirp A., Loge F., Aust S., Swaner P., Turner G., Wolcott M. Production and Characterization of Natural Fiber-Reinforced Thermoplastic Composites Using Wheat Straw Modified with the Fungus Pleurotus ostreatus. J. Appl. Polym. Sci., 2006;102:5191–5201 (in Eng.).

13. Rakhimov M.A., Rakhimova G.M., Imanov E.M. Problems of utilization of polymeric waste (Problemy utilizatsii polimernykh otkhodov). Fundamental'nye issledovaniya, 2014;8(2):331–334. (in Russ.).

14. Problems of polymer wastes recycling in the Russian Federation (Problemy retsiklinga otkhodov iz polimerov v RF) [E-resource]. Available on: http://telegraf.by/2011/12/problemi-reciklinga-othodoviz-polimerov-v-rf. The title from the screen (08.08.2017) (in Russ.).

15. Under “Green point” sign (Pod znakom “Zelenoi tochki”) [E-resource]. Available on: http://www.pakkograff.ru/reader/articles/business/practice/9 58.php. The title from the screen (08.08.2017) (in Russ.).

16. Chesnokova R.V. Environmental protection in Great Britain (Okhrana okruzhayushchei sredy v Velikobritanii). Ekologiya i promyshlennost' Rossii, 2001;4:42–45 (in Russ.).

17. Kuzmin A.M., Vodyakov V.N., Kotina E.A. Modification of thermoplastic composites with vegetable filler mineral fine particles (Modifikatsiya termoplastichnykh kompozitov s rastitel'nym napolnitelem mineral'nymi tonkodispersnymi chastitsami). Vestnik Kazanskogo tekhnologicheskogo universiteta, 2017;20(2):74–77 (in Russ.).

18. Marcovich N.E., Reboredo M.M., Aranguren M.I. Mechanical properties of woodflour unsaturated polyester composites. Journal of Applied Polymer Science, 1998;68(13):2069–2076 (in Eng.).

19. Musin I.N., Fayzulin I.Z., Wolfson S.I. Influence of additives on properties of wood and polymeric composites (Vliyanie dobavok na svoistva drevesno-polimernykh kompozitov). Vestnik Kazanskogo tekhnologicheskogo universiteta, 2012;15(24):97–99 (in Russ.).

20. Lei Y., Wu Q., Yao F., Xu Y. Preparation and properties of recycled HDPE/natural fiber composites. Composites: Part A, 2007;38(7):1664–1674 (in Eng.).

21. Zenkiewicz M., Dzwonkowski J. Effects of electron radiation and compatibilizers on impact strength of composites of recycled polymers. Polymer Testing, 2007;26:903–907 (in Eng.).

22. Redwan A., Badri K.H., Baharum A. An Overview on Lignocellulosic Fibers Ienforced Polymer Composite Materials. Journal of Al-Nahrain University, 2017;20(1):25–31 (in Eng.).

23. Yao F., Wu Q., Liu H., Lei Y., Zhou D. Rice Straw Fiber Reinforced High Density Polyethylene Composite: Effect of Coupled Compatibilizating and Toughening Treatment. J. Appl. Polym. Sci., 2011;119:2214–2222 (in Eng.).

24. Ruey Shan Chen, Mohd Hafizuddin Ab Ghani, Sahrim Ahmad, Mohd Nazry Salleh, Mou’ad A Tarawneh Rice husk flour biocomposites based on recycled high-density polyethylene/ polyethylene terephthalate blend: Effect of high filler loading on physical, mechanical and thermal properties. Journal of Composite Materials, 2014;1:1–13 (in Eng.).

25. Jiun Hor Low, Nurnadia Andenan ,Wan Aizan Wan Abdul Rahman. The Influence of Crosslink Chemicals on the Mechanical Strength and Water Absorption of Rice Straw-Based Green Composites. Journal of Natural Fibers, 2017;June:1–9 (in Eng.).

26. Väisänen T., Heikkinen J., Tomppo L., Lappalainen R. Improving the properties of wood– plastic composite through addition of hardwood pyrolysis liquid. Journal of Thermoplastic Composite Materials, 2016;29(11):1587–1598 (in Eng.).

27. Putten R.-J., van der Waal J.C., Jong E., Rasrendra C.B., Heeres H.J., Vries J.G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev., 2013;113:1499 (in Eng.).

28. Klushin B.A., et all. Technological Basis for the Transformation of Fructose into a Versatile Platform, High Purity 5-Hydroxymethylfurfural. Russian Journal of Organic Chemistry, 2016;52:783–787 (in Eng.).

29. Klushin VA., Kashparova V.P., Chizhikova A.A., Smirnova N.V. Optimization of process of carbohydrates dehydration to 5- hydroxymethylfurfural in two-phase system (Optimizatsiya protsessa degidratatsii uglevodov do 5-gidroksimetilfurfurola v dvufaznoi sisteme). Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriya: Tekhnicheskie nauki, 2016;(4):123–127 (in Russ.).

30. Bodyan L.A. et all. Research of composite materials on the basis of secondary polymeric raw materials (Issledovanie kompozitsionnykh materialov na osnove vtorichnogo polimernogo syr'ya) [E-resource]. Sovremennye naukoemkie tekhnologii; 2015;(2):15–18. Available on: https://www.top-technologies.ru/ru/article/view?id=34877 (08.08.2017) (in Russ.).


Review

For citations:


Kashparov I.I., Klushin V.A., Vinokourov I.P., Zubenko A.F., Kashparova V.P., Smirnova N.V. COMPOSIT MATERIALS BASED ON AGRICULTURAL AND 5-HYDROXYMETHYLFURFUROL PRODUCTION WASTES AND POLYETHYLENE. Alternative Energy and Ecology (ISJAEE). 2017;(19-21):116-125. (In Russ.) https://doi.org/10.15518/isjaee.2017.19-21.116-125

Views: 837


ISSN 1608-8298 (Print)