Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

HYDROGENATION OF Ti80Fe20 ALLOY

https://doi.org/10.15518/isjaee.2018.01-03.049-056

Abstract

We investigated the interaction of alloy of composition 80 at. % of Ti + 20 at. % of Fe (Ti80Fe20) with ammonia under pressure of 0.6 ÷ 0.8 MPa at the temperatures 100 ÷ 500 ºC: the phase transformations in the Ti80Fe20–NH3 system were defined; the composition of products was established; the formation conditions of the hydride and nitride phases were found; the formation temperatures of the hydride phases with the greatest possible content of hydrogen for use of alloy in the metal hydride accumulators of hydrogen were determined. The study shows the dependence of the reaction direction of alloy with ammonia, taking place in presence of NH4Cl (the 10 wt. % of alloy quantity) as activator, on temperature. One of the products of the reaction, which is carried out at 100 ºC, is the hydride phase of composition Ti4FeH8.3. With further a slight increase in temperature of reaction, this phase decomposes on hydride phases of the titanium and of the intermetallic compound TiFe. At interaction temperature of 200 ºC and above, insignificant amount of nitrogen is introduced into a metal lattice of hydride of an intermetallide of TiFeH-2 with formation of the phase TiFeH-2Nx. At temperature of 350 ºC and above, the titanium nitride TiN appears as a part of reaction product. The interaction of alloy and ammonia at 500 ºC leads to mixture of titanium nitride and metallic - Fe. The sharp increase in a specific surface area of reaction products at increase in process temperature from 250 ºC to 400 ºC (from 0.2 m 2 /g to 46.4 m2 /g) is shown to demonstrate the formation of mixture of high-disperse powders. The metal hydride accumulator of hydrogen on the basis of the studied alloy can work in a temperature range of room temperature to 600 ºC and allocate up to 3 wt. % of hydrogen.

 

About the Authors

V. N. Fokin
Institute of Problems of Chemical Physics of RAS
Russian Federation
Ph.D. in Chemistry, Senior Researcher


E. E. Fokina
Institute of Problems of Chemical Physics of RAS
Russian Federation
Researcher


B. P. Tarasov
Institute of Problems of Chemical Physics of RAS
Russian Federation
Ph.D. in Chemistry, Head of Laboratory


References

1. Reilly J.J., Wiswall R.H. Formation and properties of iron titanium hydride. Inorganic Chemistry, 1974;13(1):218–222 (in Eng.).

2. Tarasov B.P., Lotostkii M.V., Yartys V.A. Problem of hydrogen storage and use perspectives of hydrides for hydrogen accumulation (Problema khraneniya vodoroda i perspectivy ispol'zovaniya gidridov dlya akkumulirovaniya vodoroda). Rossiiskii khimicheskii zhurnal, 2006;L(6):34–48 (in Russ.).

3. Sakintuna B., Lamari-Darkrim F., Hirscher M. Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy, 2007;32(9):1121–1140 (in Eng.).

4. Principi G., Agresti F., Maddalena A., Lo Russo S. The problem of solid state hydrogen storage. Energy, 2009;34:2087–2091 (in Eng.).

5. Rusman N.A.A., Dahari M. A review on the current progress of metal hydrides material for solid state hydrogen storage application. International Journal of Hydrogen Energy, 2016;41:12108–12126 (in Eng.).

6. Kinaсi A., Aydinol M.K. Ab initio investigation of FeTi–H system. International Journal of Hydrogen Energy, 2007;32(13):2466–2474 (in Eng.).

7. Zadorozhnyy V., Klyamkin S., Zadorozhnyy M., Bermeseva O., Kaloshkin S. Hydrogen storage nanocrystalline TiFe intermetallic compound: Synthesis by mechanical alloying and compacting. International Journal of Hydrogen Energy, 2012;37:17131–17136 (in Eng.).

8. Edalati K., Matsuda J., Iwaoka H., Toh S., Akiba E., Horita Z. High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure. International Journal of Hydrogen Energy, 2013;38:4622–4627 (in Eng.).

9. Emami H., Edalati K., Matsuda J., Akiba E., Horita Z. Hydrogen storage performance of TiFe after processing by ball milling. Acta Materialia, 2015;88:190–195 (in Eng.).

10. Berdonosova E.A., Klyamkin S.N., Zadorozhnyy V.Yu., Zadorozhnyy M.Yu., Geodakian K.V., Gorshenkov M.V., Kaloshkin S.D. Calorimetric study of peculiar hydrogenation behavior of nanocrystalline TiFe. Journal of Alloys and Compounds, 2016;688:1181–1185 (in Eng.).

11. Zadorozhnyy V.Yu., Milovzorov G.S., Klyamkin S.N., Zadorozhnyy M.Yu., Strugova D.V., Gorshenkov M.V., Kaloshkin S.D. Preparation and hydrogen storage properties of nanocrystalline TiFe synthesized by mechanical alloying. Progress in Natural Science: Materials International, 2017;27:149–155 (in Eng.).

12. Sandrock G. A panoramic overview of hydrogen storage alloys from a gas reaction point of view. Journal of Alloys and Compounds, 1999;293(1):877–888 (in Eng.).

13. Bououdina M., Grant D., Walker G. Review on hydrogen absorbing materials – structure, microstructure and thermodynamic properties. International Journal of Hydrogen Energy, 2006;31(2):177–182 (in Eng.).

14. Fokin V.N., Fokina E.E., Korobov I.I., Tarasov B.P. Phase transformations in the systems Ti2Fe–H2 and Ti2Fe–NH3 (Fazovye prevrashcheniya v sistemakh Ti2Fe–H2 i Ti2Fe–NH3). Zhurnal neorganicheskoi khimii, 2016;61(7):931–935 (in Russ).

15. Mitrokhin S.V., Verbetsky V.N., Kaumov R.R., Hong Cunmao, Zhang Yufen. Hydrogen absorption of TiFe-based Ti-Fe-V-Mn alloys. Journal of Alloys and Compounds, 1993;199:155–160 (in Eng.).

16. Guéguen A., Latroche M. Influence of the addition of vanadium on the hydrogenation properties of the compounds TiFe0.9Vx and TiFe0.8Vx (x = 0, 0.05 and 0.1). Journal of Alloys and Compounds, 2011;509:5562–5566 (in Eng.).

17. Zadorozhnyy M.Yu., Kaloshkin S.D., Klyamkin S.N., Bermesheva O.V., Zadorozhnyy V.Yu. Mechanochemical synthesis of nanocrystalline intermetallic compound TiFe and its mechanical hydrogenation with third component (Mekhanokhimicheskii sintez nanokristallicheskogo soedineniya TiFe i ego mekhanicheskoe gidrirovanie tret'im komponentom). Metallovedenie i termicheskaya obrabotka metallov, 2012;(9):30–35 (in Russ.).

18. Zadorozhnyy V.Yu., Klyamkin S.N., Zadorozhnyy M.Yu., Gorshenkov M.V., Kaloshkin S.D. Mechanical alloying of nanocrystalline intermetallic compound TiFe doped with sulfur and magnesium. Journal of Alloys and Compounds, 2014;615:S569–S572 (in Eng.).

19. Aoki K. Solid state amorphous phase formation by hydrogen absorption. Materials Science and Engineering. A, 2001;304–306(1–2):45–53 (in Eng.).

20. Abe M., T. Kuji Hydrogen absorption of TiFe alloy synthesized by ball milling and post-annealing. Journal of Alloys and Compounds, 2007;446–447:200– 203 (in Eng.).

21. Chiang C.-H., Chin Z.-H., Perng T.-P. Hydrogenation of TiFe by high-energy ball milling. Journal of Alloys and Compounds, 2000;307:259–265 (in Eng.).

22. Tarasov B.P., Fokina E.E., Fokin V.N. Synthesis of hydrides of intermetallic compounds (Sintez gidridov intermetallicheskikh coedinenii). Zhurnal obshchei khimii, 2014;84(2):199–203 (in Russ.).

23. Tarasov B.P., Fokina E.E., Fokin V.N. Dispergation and phase transformations at interaction of intermetallic compounds and alloys of Ti, Zr and Y with iron and nickel with ammonia (Dispergirovanie i fazovye prevrashcheniya pri vzaimodeistvii s ammiakom intermetallicheskhich soedinenii i splavov Ti, Zr i Y s zhelezom i nikelem). Izvestiya AN. Seriya khimicheskaya, 2016;(8):1887–1892 (in Russ.).

24. Semenenko K.N., Burnasheva V.V., Fokina E.E., Fokin V.N., Troitskaya S.L. To a question about the mechanism of hydrogenation of metals in the presence of intermetallic compounds (K voprosu o mekhanizme gidrirovaniya metallov v prisutstvii intermetallicheskikh soedinenii). Zhurnal obshchei khimii, 1989;59(10):2173– 2177 (in Russ.).

25. Verbetsky V.N., Kayumov R.R., Semenenko K.N. Interaction of alloy Ti4Fe with hydrogen (Vzaimodeistvie s vodorodom splava Ti4Fe). Metally, 1991;(1):199–201 (in Russ.).

26. Rupp B. On the change in physical properties of the Tiy-xFe2+xOy during hydrogenation. Journal of Less-Common Metals, 1984;104:51–54 (in Eng.).

27. Tarasov B.P., Fokina E.E., Fokin V.N. Chemical methods of dispergation of metallic phases (Khimicheskie metody dispergirovaniya metallicheskikh faz). Izvestiya AN. Seriya khimicheskaya, 2011;(7):1228–1236 (in Russ.).

28. Fokin V.N., Fokina E.E., Tarasov B.P. Hydrogenation of intermetallic compound Zr2Ni. (Gidrirovanie intermetallicheskogo soedineniya Zr2Ni). Neorganicheskie materialy, 2014;50(1):24–27 (in Russ.).

29. State diagrams of double metal systems (Diagrammy sostoyaniya dvoinykh metallicheskikh sistem): Handbook. V. 2 / Under the general edition of the academician N.P. Lyakishev. Moscow: Mechanical engineering Publ., 1997 (in Russ.).

30. Crane R.L., Chattoraj S.C., Strope M.B. A room-temperature polymorphic transition of titanium hydride. Journal of Less-Common Metals, 1971;25(2):225–227 (in Eng.).

31. Samsonov G.V. Nitrides (Nitridy). – Kiev: Naukova dumka, 1969 (in Russ).


Review

For citations:


Fokin V.N., Fokina E.E., Tarasov B.P. HYDROGENATION OF Ti80Fe20 ALLOY. Alternative Energy and Ecology (ISJAEE). 2018;(1-3):49-56. (In Russ.) https://doi.org/10.15518/isjaee.2018.01-03.049-056

Views: 827


ISSN 1608-8298 (Print)