Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

STRUCTURE, TRANSPORT PROPERTIES AND ELECTROCHEMICAL BEHAVIOR OF THE LAYERED LANTHANIDE NICKELATES DOPED WITH CALCIUM

https://doi.org/10.15518/isjaee.2018.01-03.070-093

Abstract

Progress in hydrogen energy and promising directions for its modern development are closely related to the development of fuel cells, including solid oxide fuel cells, and solid state membranes for hydrogen, oxygen and synthesis gas production. A necessary condition for fabrication the economically competitive devices in this area is the use of cheap electrode materials combining high electrochemical activity and long-term stability. Ln2NiO4+δ oxides with the Ruddlesden–Popper layered structure with a high mixed ion-electron conductivity and moderate values of the coefficients of thermal expansion are promising materials for the development of oxygen-conducting membranes and cathodes of intermediate-temperature solid oxide fuel cells. The paper studies the structure, electrical conductivity, oxygen mobility and electrochemical properties of Ln2-xCaxNiO4+δ (Ln = La, Pr, Nd; x = 0; 0.3) in order to determine the factors that have the most significant effect on the electrochemical activity of electrodes and their stability. We have found that doping with calcium leads to stabilization of the structure and an increase in the electrical conductivity of materials. However, addition of calcium decreases the electrochemical activity of the electrodes in varying degrees depending on the nature of the lanthanide. There is no direct interrelation of such a decrease of activity with either the electrical properties or the interstitial oxygen content. We have revealed correlation of the polarization resistance of electrodes between characteristics of oxygen transfer in the electrode material (self-diffusion coefficient, surface exchange constant). Using the C18O2 SSITKA method, the total oxygen mobility in the doped materials is shown to fall due to a decrease in the content of highly mobile interstitial oxygen and hampering of the cooperative oxygen transport mechanism. In the case of La1.7Ca0.3NiO4+δ , this leads to the appearance of a slow diffusion channel and a substantial decrease in the total diffusion coefficient value which leads to a sharp increase in the polarization resistance of the electrodes. This phenomenon is not observed in materials with praseodymium and neodymium. The electrodes based on Pr1. La1.7Ca0.3NiO4+δ and Nd1.7 La1.7Ca0.3NiO4+δ, developed in this work, have an acceptable level of the electrochemical activity along with a high electrical conductivity and increased stability in comparison with undoped compositions and can be recommended for use as cathodes for intermediate temperature fuel cells.

 

About the Authors

E. Yu. Pikalova
Institute of High Temperature Electrochemistry UB RAS; Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Ph.D. in Chemistry, Senior Researcher, Laboratory of SOFCs, IHTE UB RAS, Leading Researcher, Associated Professor of the Department of Environmental Economics, Ural Federal University; Permanent member of American Ceramic Society, European Electrochemical Society

Researcher ID: L-6877-2017

Scopus: 16242376500



A. A. Kolchugin
Institute of High Temperature Electrochemistry UB RAS; Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Engineer at Laboratory of SOFCs, IHTE UB RAS, Junior Researcher of Ural Federal University

Researcher ID: E-8650-2017

РИНЦ: 919161

Scopus: 56105439200



V. A. Sadykov
Boreskov Institute of Catalysis SB RAS; Novosibirsk State University
Russian Federation

D.Sc. in Chemistry, Chief Research Scientist, Head of the Laboratory at the Boreskov Institute of Catalysis SB RAS; Professor and Head of Laboratory of Novosibirsk State University; a Member of American Chemical Society and Materials Research Society

Researcher ID: F-9131-2012



E. M. Sadovskaya
Boreskov Institute of Catalysis SB RAS; Novosibirsk State University
Russian Federation

D.Sc. in Engineering, Senior Researcher, Boreskov Institute of Catalysis SB RAS, Novosibirsk State University

Researcher ID: A-8318-2014

РИНЦ: 47816

Scopus: 6601984831



E. A. Filonova
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Ph.D. in Chemistry, Associated Prof. at Chair of the Physical and Inorganic Chemistry, Institute of Natural Sciences and Mathematics, Federal State Autonomous Educational Institution of Higher Education “Ural Federal University named after the first President of Russia B.N. Yeltsin”

Scopus: 6602857032



N. F. Yeremeev
Boreskov Institute of Catalysis SB RAS
Russian Federation

Ph.D. in Chemistry, Researcher, Boreskov Institute of Catalysis SB RAS

Researcher ID: D-7148-2012

РИНЦ: 642122

Scopus: 55645818400



N. M. Bogdanovich
Institute of High Temperature Electrochemistry UB RAS
Russian Federation

Researcher at Laboratory of SOFCs, IHTE UB RAS

РИНЦ: 152914

Scopus: 7006746016



References

1. Information and analytical magazine for professionals. Regional energy and energy savings (In-formatsionno-analiticheskii zhurnal dlya professionalov Regional'naya energetika i energosberezhenie). Available on: https://energy.s-kon.ru/v-analiticheskom-tsentreobsudili-perspektivy-razvitiya-raspredelennoj-energetiki-v-rossii/ (27.09.2017) (in Russ.).

2. Arutyunov V.S., Lisichkin G.V. Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels? Russian Chemical Review, 2017;86(8):777–804.

3. Gomez S.Y., Hotza D. Current developments in reversible solid oxide fuel cells. Renewable and Sustainable Energy Reviews, 2016;61:155–174.

4. Singhal S.C., Kendall K. High-temperature solid oxide fuel cells: fundamentals, design, and applications. New York: Elsevier Advanced Technology, 2003; 497 p.

5. Adler S.B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 2004;104(10):14791–4843.

6. Istomin S.Y., Antipov E.V. Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Russian Chemical Review, 2013;82(7):686–700.

7. Park E., Taniguchi S., Daio T., Chou J.-T., Sasaki K. Influence of cathode polarization on the chromium deposition near the cathode/electrolyte interface of SOFC. International Journal of Hydrogen Energy, 2014;39(3):1463–1475.

8. Silva F.S., Souza T.M. Novel materials for solid oxide fuel cell technologies: A literature review. International Journal of Hydrogen Energy. 2017;42(41):26020– 26036.

9. Boehm E., Bassat J.-M., Dordor P., Mauvy F., Grenier J.-C., Stevens Ph. Oxygen diffusion and transport properties in non-stoichiometric Ln2-xNiO4+δ oxides. Solid State Ionics, 2005;176(37–38):2717–2725.

10. Sadykov V.A., Eremeev N.F., Usol'tsev V.V., Bobin A.S., Alikina G.M., Pelipenko V.V., Sadovskaya E.M., Muzykantov V.S., Bulgakov N.N., Uvarov N.F. Mechanism of oxygen transfer in layered lanthanide nickelates Ln2−xNiO4+δ (Ln = La, Pr) and their nanocomposites with Ce0.9Gd0.1O2−δ and Y2(Ti0.8Zr0.2)1.6Mn0.4O7−δ solid electrolytes. Russian Journal of Electrochemistry, 2013;49(7):645–651.

11. Hildenbrand N., Nammensma P., Blank D.H.A., Bouwmeester H.J.M., Boukamp B.A. Influence of configuration and microstructure on performance of La2NiO4+δ IT-SOFC cathodes. Journal of Power Sources, 2013;238:442–453.

12. Chiu T.W., Wang W.-R., Wu J.-S. Synthesis of Pr2CuO4 powders by using a glycine–nitrate combustion method for cathode application in intermediate-temperature solid oxide fuel cells. Ceramic International, 2015;41(1):S675–S679.

13. Kolchugin A.А., Pikalova E.Yu., Bogdanovich N.M., Bronin D.I., Pikalov S.M., Plaksin S.V., Ananyev M.V., Eremin V.A. Structural, electrical and electrochemical properties of calcium-doped lanthanum nickelate. Solid State Ionics, 2016;288:48–53.

14. Kolchina L.M., Lyskov N.V., Pestrikov P.P., Istomin S.Ya, Mazo G.N., Antipov E.V. Evaluation of La1.8−xPrxSr0.2CuO4−δ oxides as cathode materials for IT-SOFCs. Materials Chemistry and Physics, 2015;165:91–96.

15. Pikalova E.Yu., D.A. Medvedev, A.F. Khasanov Structure, stability, and thermomechanical properties of Ca-substituted Pr2NiO4+δ, Physics of Solid State, 2017;59(4):694–702.

16. Shen Y., Zhao H., Xu J., Zhang X., Zheng K., Świerczek K. Effect of ionic size of dopants on the lattice structure, electrical and electrochemical properties of La2-xMxNiO4+δ (M = Ba, Sr) cathode materials. International Journal of Hydrogen Energy, 2014;39(2)1023–1029.

17. Yang J., Cheng J., Jiang Q., Wang Y., Wang R., Gao J. Preparation and electrochemical properties of strontium doped Pr2NiO4 cathode materials for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2012;37(2):1746–1751.

18. Bhoga S.S., Khandale A.P., Pahune B.S. Investigation on Pr2−xSrxNiO4+δ (x=0.3–1.0) cathode materials for intermediate temperature solid oxide fuel cell. Solid State Ionics, 2014; 262:340–344.

19. Kravchenko E., Khalyavin D., Zakharchuk K., Grins J., Svensson G., Pankov V., Yaremchenko A. High-temperature characterization of oxygen deficient K2NiF4-type Nd2-xSrxNiO4-δ (x ≥ 1.0–1.6) for potential SOFC/SOEC applications. Journal of Materials Chemistry A, 2015;3:23852–23863.

20. Pikalova E., Bogdanovich N., Kolchugin A., Medvedev D., Vedmid' L., Pikalov S., Plaksin S. Development of Pr2-xCaxNiO4 Cathode Materials for IT SOFC Based on Oxygen-Ion and Proton-Conducting Solid State Electrolytes, in Krope J., Olabi A.G., Goricanec D., Bozicnik S. 10th International Conference on Sustainable Energy and Environmental Protection: Hydrogen and Fuel Cells, University of Maribor Press, Bled, Slovenia, 2017, p. 87–96.

21. Sadykov V., Sadovskaya E., Bobin A., Kharlamova T., Uvarov N., Ulikhin A., Argirusis Ch., Sourkouni G., Stathopoulos V. Temperature-programmed C18O2 SSITKA for powders of fast oxideion conductors: Estimation of oxygen self-diffusion coefficients. Solid State Ionics, 2015;271:69–72.

22. Skinner S.J., Kilner J.A. Oxygen diffusion and surface exchange in La2-xSrxNiO4+δ. Solid State Ionics, 2000;135(1–4):709–712.

23. Kilner J.A., Shaw C.K.M. Mass transport in La2Ni1-xCoxO4+delta oxides with the K2NiF4 structure. Solid State Ionics, 2002;154–155:523–527.

24. Burriel M., Garcia G., Santiso J., Kilner J.A., Richard J.C.C., Skinner S.J. Anisotropic oxygen diffusion properties in epitaxial thin films of La2NiO4+δ. Journal of Materials Chemistry, 2008;18:416–422.

25. Pavlova S., Bespalko Y., Sadykov V., Eremeev N., Krieger T., Sadovskaya E., Ishchenko A., Bobin A., Ulihin A., Uvarov N., Smirnova A. Structural and transport properties of doped LAMOX—Electrolytes for IT SOFC. Solid State Ionics, 2016;288:103–109.

26. Sadykov V.A., Sadovskaya E.M., Uvarov N.F. Methods of isotopic relaxations for estimation of oxygen diffusion coefficients in solid electrolytes and materials with mixed ionic-electronic conductivity. Russian Journal of Electrochemistry. 2015;51(5):458–467.

27. Muzykantov V., Popovskii V., Boreskov G. Kinetics of isotope exchange in a molecular oxygen – solid oxide system (Kinetika izotopnogo obmena v sisteme molekulyarnyi kislorod – tverdyi okisel). Kinetics and Catalysis, 1964;5(4):624–629 (in Russ.)

28. Ananyev M.V., Kurumchin E.Kh., Porotnikova N.M., Effect of oxygen nonstoichiometry on kinetics of

29. oxygen exchange and diffusion in lanthanum-strontium cobaltites. Russian Journal of Electrochemistry, 2010;46(7):789–797.

30. Boreskov G.K., Kasatkina L.A., Amerikov V.G. Homomolecular isotope exchange of CO2 on metal oxides of the IV period (Gomomolekulyarnyi izotopnyi obmen CO2 na okislakh metallov IV perioda). Kinetics and Catalysis, 1969;10:102–112 (in Russ.).

31. Muzykantov V.S., Cheshkova K.Ts., Boreskov G.K., Heteroexchange and self-diffusion of oxygen in the O2 – CO2 – MoO3 system (Geteroobmen i samodiffuziya kisloroda v sisteme O2 – CO2 – MoO3). Kinetics and Catalysis, 1973; 14(2):432–439 (in Russ.).

32. Gorelov G.P., Kurumchin E.Kh. Investigation of the exchange of cerium dioxide by isotopic exchange with molecular oxygen (Issledovanie obmena dioksida tseriya metodom izotopnogo obmena s molekulyarnym kislorodom). Kinetics and Catalysis, 1986;27(6):1346– 1351 (in Russ.).

33. Gorelov G.P., Kurumchin E.Kh. Investigation of the exchange of cerium dioxide by isotopic exchange with carbon dioxide (Issledovanie obmena dioksida tseriya metodom izotopnogo obmena s dioksidom ugleroda), Ekaterinburg, UIF “Nauka”: Ionika tverdogo tela, 1993, p. 46–53 (in Russ.).

34. Sadykov V.A., Eremeev N.F., Bolotov V.A., Tanashev Yu.Yu., Fedorova Yu.E., Amanbayeva D.G., Bobin A.S., Sadovskaya E.M., Muzykantov V.S., Pelipenko V.V., Lukashevich A.I., Krieger T.A., Ishchenko A.V., Smirnova A.L. The effect of microwave sintering on stability and oxygen mobility of praseodymium nickelates-cobaltites and their nanocomposites. Solid State Ionics, 2016;288:76–81.

35. Gorgoraki V.I., Boreskov G.K., Kasatkina L.A. Catalytic properties of NiO in homomolecular oxygen exchange reaction (Kataliticheskie svoistva NiO v reaktsii gomomolekulyarnogo obmena kisloroda). Kinetics and Catalysis, 1966;7(2):266–272 (in Russ.).

36. Kasatkina L.A., Amerikov V.G. Catalytic activity of manganese dioxide with respect to the isotopic exchange reaction in molecular oxygen (Kataliticheskaya aktivnost' dvuokisi margantsa v otnoshenii reaktsii izotopnogo obmena v molekulyarnom kislorode). Kinetics and Catalysis, 1966;7(1):99–106 (in Russ.).

37. Adler S.B., Chen X.Y., Wilson J.R. Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces. Journal of Catalysis, 2007;245(1): 91–109.

38. Amerikov V.G., Boreskov G.K., Kasatkina L.A. Catalytic activity of oxides of iron, cobalt, nickel with respect to the isotopic exchange reaction in carbon dioxide molecules (Kataliticheskaya aktivnost' okislov zheleza, kobal'ta, nikelya v otnoshenii reaktsii izotopnogo obmena v molekulakh dvuokisi ugleroda). Kinetics and Catalysis, 1967;8(3):646–653 (in Russ.).

39. Amerikov V.G., Kasatkina L.A., Popova G.Yu. Study of the kinetics of isotope exchange of CO2 on the surface of chromium oxide (Issledovanie kinetiki izotopnogo obmena CO2 na poverkhnosti okisi khroma), Kinetics and Catalysis, 1968;9(2):429–432. (in Russ.).

40. Ishchuk V.P., Kurumchin E.Kh., Perfil'ev M.V., Karpachev S.V. Heteroexchange of oxygen of solid oxide electrolyte in the atmosphere of CO-CO2 (Geteroobmen kisloroda tverdogo okisnogo elektrolita v at-mosfere CO – CO2). Kinetics and Catalysis, 1980;21(3):714–720. (in Russ.).

41. Project Zirconia, Website: https://zirconiaproject.wordpress.com/devices/zirconia-318 [accessed 27.09.2017] (in Russ.).

42. Kolchugin A.A., Pikalova E.Yu., Bogdanovich N.M., Bronin D.I., The effect of copper on the properties of La1.7Ca0.3NiO4+δ-based cathodes or solid oxide fuel cells. Russian Journal of Electrochemistry, 2015;51(5):483–490.

43. Pikalova E.Yu., Bogdanovich N.M., Kolchugin A.A., Ananyev M.V., Pankratov A.A. Influence of the synthesis method on the electrochemical properties of bilayer electrodes based on La2NiO4 and LaNi0.6Fe0.4O3. Solid State Ionics, 2016;288:36–42.

44. Shannon, R.D. Revised effective ionic radii and systematic studies in interatomic distances in halides and chalcogenides. Acta Crystallographica, 1976;A32:751–767.

45. Gilev A.R., Kiselev E.A., Cherepanov V.A. Synthesis, oxygen nonstoichiometry and total conductivity of (La,Sr)2(Mn,Ni)O4±δ. Solid State Ionics, 2015;279:53–59.

46. Kim H.-S., Yoo H.-I. Isothermal Onsager matrices and acceptor size effect on mass/charge transport properties of La1.9A0.1NiO3.95+δ (A = Ca, Sr). Physical Chemistry Chemical Physics, 2014;16:16595–16605.

47. Ruck K., Krabbes G., Vogel I. Structural, magnetic and dielectric properties of La2−xCaxNiO4+δ (x=0, 0.1, 0.2, 0.3). Materials Research Bulletin, 1999;34(10–11):1689–1697.

48. Vashook V.V., Tolochko S.P., Yushkevich I.I., Makhnach L.V., Kononyuk I.F., Altenburg H., Hauck J., Ullmann H. Oxygen nonstoichiometry and electrical conductivity of the solid solutions La2−xSrxNiOy (0≤x≤0.5). Solid State Ionics, 1999;110(3–4):245–253.

49. Nakamura T., Yashiro K., Sato K., Mizusaki J. Oxygen nonstoichiometry and defect equilibrium in La2−xSrxNiO4+δ. Solid State Ionics, 2009;180(4–5):368–376.

50. Bassat J.-M., Odier P., Villesuzanne A., Marin C., Pouchard M. Anisotropic ionic transport properties in La2NiO4+δ single crystals. Solid State Ionics. 2004;167(3–4):341–347.

51. Nishiyama S., Sakaguchi D., Hattori T. Electrical conduction and thermoelectricity of La2NiO4+δ and La2(Ni,Co)O4+δ. Solid State Communications, 1995;94(4):279–282.

52. Goodenough J. B., Ramasesha S. Further evidence for the coexistence of localized and itinerant 3d electrons in La2NiO4. Materials Research Bulletin, 1982;17:383–390.

53. Goodenough J. B. Bond-length mismatch in in-tergrowth structures. Journal of the Less Common Metals, 1986;116(1):83–93.

54. Bassat J.M., Odier P., Loup J. P. The semiconductor-to-metal transition in question in La2NiO4+δ (δ>0 or δJournal of Solid State Chemistry, 1994;110(1):124–135.

55. Nakamura T., Yashiro K., Sato K., Mizusaki J. Electronic state of oxygen nonstoichiometric La2-xSrxNiO4+delta at high temperatures. Physical Chemistry Chemical Physics, 2009;11:3055–3062.

56. Takeda Y., Kanno R., Sakano M., Yamamoto O., Takano M., Bando Y., Goodenough J.B. Crystal chemistry and physical properties of La2-xSrxNiO4 (0 ≤ x ≤ 1.6). Materials Research Bulletin, 1990;25(3):293–306.

57. Osinkin D.A., Kolchugin A.A., Gavrilyuk A.L., Pikalova E.Yu., Bogdanovich N.M., Bronin D.I. The distribution of relaxation times as a tool for observation the evolution of electrode processes during long-term tests, in A.V. Pisareva, P.V. Pisarev, N.G. Bukun, 13th International Meeting on Fundamental problems on solid state ionics, M., Granitsa, 2017, p. 441–442.

58. Flura A., Nicollet C., Fourcade S., Vibhu V., Rougier A., Bassat J.-M., Grenier J-C. Identification and modelling of the oxygen gas diffusion impedance in SOFC porous electrodes: application to Pr2NiO4+δ. Electrochimica Acta, 2015;174:1030–1040.

59. Zhao K., Wang Y.-P., Chen M., Xu Q., Kim B.-H., Huang D.-P. Electrochemical evaluation of La2NiO4+ δ as a cathode material for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2014;39(13):7120–7130.

60. Kim T., Wang S., Jacobson A.J., Chen C. Impedance studies of dense polycrystalline thin films of La2NiO4+δ. Journal of Materials Chemistry, 2007;17(13):1316–1320.

61. Pikalova E.Yu., Bogdanovich N.M., Plaksin S.V. Electrochemical behaviour of deficite neodimium nickelate doped with calcium (Elektrokhimicheskoe povedenie defitsitnogo sloistogo nikelata neodima, dopirovannogo kal'tsiem), in Zaykov Yu.P., Ananyev M.V., Stepanov V.P., Medvedev D.A., The first international conference on intellect-intensive technologies in power engineering (Physical chemistry and electrochemistry of molten and solid state electrolytes). Proceedings, Ekaterinburg, Azhur publishing house, 2017, p. 566–570 (in Russ.).

62. Ananyev M.V., Tropin E.S., Eremin V.A., Farlenkov A.S., Smirnov A.S., Kolchugin A.A., Porotnikova N.M., Khodimchuk A.V., Berenov A.V., Kurumchin E.Kh. Oxygen isotope exchange in La2NiO4±δ. Physical Chemistry Chemical Physics, 2016;18(13):9102–9111.

63. Adler S.B. Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ionics, 2000;135(1–4):603–612.

64. Li X., Benedek N.A. Enhancement of ionic transport in complex oxides through soft lattice modes and epitaxial strain. Chemistry of Materials, 2015;27(7):2647–2652.

65. Minervini L., Grimes R.W., Kilner J.A., Sickafus K.E. Oxygen migration in La2NiO4+δ. Journal of Materials Chemistry, 2000;10:P. 2349–2354.

66. Sadykov V., Okhlupin Yu., Yeremeev N., Vinokurov Z., Shmakov A., Balyaev V., Unarov N., Mertens J.In situ X-ray diffraction studies of Pr2-xNiO4+δ crystal structure relaxation caused by oxygen loss. Solid State Ionics, 2014;262:918–922.

67. Sadykov V.A., Sadovskaya E.M., Pikalova E.Yu., Kolchugin A.A., E. A. Filonova, Pikalov S.M., Eremeev N.F., Ishchenko A.V., Lukashevich A.I., Bassat J.-M. Transport features in layered nickelates: correlation between structure, oxygen diffusion, electrical and electrochemical properties. energosberezhenie). Available on: https://doi.org/10.1007/s11581-017-2279-3 ( 24.09.2017).

68. Boukamp B.A., Bouwmeester H.J.M. Interpretation of the Gerischer impedance in solid state ionics. Solid State Ionics, 2003;157(1–4):29–33.

69. Adler S.B. Electrode kinetics of porous mixed-conducting oxygen electrodes. Journal of Electrochemical Society, 1996;143(11):3554–3564.

70. Lu Y.X., Kreller C., Adler S.B., Measurement and modeling of the impedance characteristics of porous La1−xSrxCoO3−δ electrodes. Journal of Electrochemical Society, 2009;156(4):B513–B525.

71. Lyskov N.V., Mazo G.N., Leonova L.S., Kol-china L.M., Istomin S.Ya., Antipov E.V. The effect of temperature and oxygen partial pressure on the reduction mechanism in the Pr2CuO4/Ce0.9Gd0.1O1.95 system. Russian Journal of Electrochemistry, 2013;49(8):747–752.

72. Gao Zh., Mogni L.V., Miller E.C., Railsback J.G., Barnett S.A. A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci., 2016;9(5):1602–1644.


Review

For citations:


Pikalova E.Yu., Kolchugin A.A., Sadykov V.A., Sadovskaya E.M., Filonova E.A., Yeremeev N.F., Bogdanovich N.M. STRUCTURE, TRANSPORT PROPERTIES AND ELECTROCHEMICAL BEHAVIOR OF THE LAYERED LANTHANIDE NICKELATES DOPED WITH CALCIUM. Alternative Energy and Ecology (ISJAEE). 2018;(1-3):70-93. (In Russ.) https://doi.org/10.15518/isjaee.2018.01-03.070-093

Views: 1087


ISSN 1608-8298 (Print)