Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

COMPARISON OF ELECTROCATALYTIC SITES DENSITY ON ELECTRODES WITH Co3O4 AND NiCo2O4 COATINGS

https://doi.org/10.15518/isjaee.2018.01-03.094-102

Abstract

The paper compares catalytic properties of spinel mixed oxides of Co3O4 and NiCo2O4, that we synthesized, as possible catalysts for the oxygen reduction reaction in an alkaline medium. This reaction is one of the most important in the development of alternative energy sources with high specific characteristics – metal-air batteries and fuel cells. One of the reagents in such systems is oxygen; another necessary component can be a metal (Zn, Li, etc.) or hydrogen. We have employed the method of comparing catalytic activity for catalysts deposited on flat electrodes and have tried to achieve the sufficient adhesion in order to use the samples as electrodes. The Co3O4 catalyst was obtained on the substrate by hydrothermal method from a solution containing 0.1 M Co(NO3)2 and 0.4 M urea. The synthesis of NiCo2O4 was carried out electrochemically from a solution containing 0.01 M Ni(NO3)2 and 0.02 M Co(NO3)2. Sample characterization was carried out with X-ray analysis; electrochemical characteristics were obtained using cyclic voltammetry in 1 M NaOH solution. The paper finds out that catalytically active sites are formed on the electrode surface with a layer of the corresponding oxide during the cathodic polarization. Formation of one center during the electrode reaction corresponds to a twoelectron transfer. Total number of the active sites can be determined from the amount of electricity. Surface coverage was determined from the amount of electricity as a function of the potential calculated from the cathodic branch of the voltammogram curve. We carried out the calculation by the method of numerical integration using the trapezoidal rule in the Excel package. Based on the calculations performed, the form and parameters of the isotherm of the surface filling with active sites as a function of the electrode potential were established. The filling of the surface with active sites is shown for the first time to take place in accordance with the Frumkin–Temkin isotherm. We calculated the isotherm parameters, the density of the sites on the surface, and the effective distance between them. Most centers were obtained for an electrode with a layer of NiCo2O4 – 2.27∙1017 cm-2 . The original technique is of interest for comparing the catalytic activity of electrodes from various materials.

 

About the Authors

A. A. Trofimov
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation
PostGraduate Student


V. M. Rudoi
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation
D.Sc. in Chemistry, Professor


T. S. Kuloshvili
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation
Student


References

1. Yeager E. Dioxygen electrocatalysis: mechanism in relation to catalyst structure. Journal of Molecular Catalysis, 1986;38(1–2):5–25. doi:10.1016/0304-5102(86)87045-6

2. Tarasevich M.R., Korchagin O.V. Electrocatalysis and pH (review) (Elektrokataliz i pH (obzor). Elektrokhimiya, 2010;49(7):676–695 (in Russ.).

3. Ignaczak A. A scenario for oxygen reduction in alkaline media. Nano Energy, 2016;29:362–368. doi:10.1016/j.nanoen.2016.11.009

4. Wen Z, Shen C, LuY. Air electrode for the lithium-air batteries: materials and structure designs. Chem. Plus. Chem, 2015;80:270–287. doi: 10.1002/cplu.201580261.

5. Wittmaier D. Bifunctional, carbon-free nickel/cobalt-oxide cathodes for lithium-air batteries with an aqueous alkaline electrolyte. Electrochimica Acta, 2014;149:355–363. doi:10.1016/j.electacta.2014.10.088

6. Bogdanovskaya V.A., Tarasevich M.R., Kuznetsova L.N., Zhutaeva G.V., Lozovaya O.V. Oxygen electroreduction on PtM (M=Co,Ni,Cr) catalysts (Elektrovosstanovlenie kisloroda na katalizatorakh PtM (M=Co,Ni,Cr)). Elektrokhimiya, 2010;46(8):985–994 (in Russ.).

7. Tarasevich M.R., Andoralov V.M., BogdanovskayaV. A., NovikovD. V., KapustinaN. A. Cathodic oxygen reduction on PdCo/C catalyst, synthesized from a commercial Pd/C catalyst (Katodnoe vosstanovlenie kisloroda na PdCo/C-katalizatore, sintezirovannom na osnove kommercheskogo katalizatora Pd/C). Elektrokhimiya, 2010;46(3):285–290 (in Russ.).

8. Sekeira S.A.S., Santos D.M.F, Brito P.S.D. Oxygen reduction electrocatalysis on lanthanum-strontium manganite (Elektrokataliz vosstanovleniya kisloroda na manganate lantana-strontsiya). Elektrokhimiya, 2008;44(2):919–923 (in Russ.).

9. Watanabe M. Overview of recent developments in oxygen electrocatalysis. Electrochimica Acta, 2012;84:187–201. doi:10.1016/j.electacta.2012.04.035

10. Osgood H., Surya V.D., Hui Xu, Jaephil Cho, Gang Wu. Transition metal (Fe, Co, Ni and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 2016;11(5):601-625. doi:10.1016/j.nantod.2016.09.001

11. Boggio R., Carugati A., Trasatti S. Electrochemical surface properties of Co3O4 electrodes. Journal of Applied Electrochemistry, 1987;17:828–840. doi:10.1007/BF01007821

12. Lee J., Jeong B., Ocon J.D. Oxygen electrocatalysis in chemical energy conversion and storage technologies. Current Applied Physics, 2013;13:309–321. doi:10.1016/j.cap.2012.08.008

13. Yang W., Salim J., Shuai Li, Chunwen S., Liquan C., Goodenough J.B., Youngsik K. Perovskite Sr0.95Ce0.05CoO3-δ loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries. Journals of Materials Chemistry, 2012;22:18902–18907. doi:10.1039/C2JM33440B

14. Risch M. Perovskite electrocatalysts for the oxygen reduction reaction in alkaline media. Catalysis, 2017;7(5):154. doi:10.3390/catal7050154

15. Huang Z., Zhang M., Cheng J., Gong Y., Li Xi, Chi Bo, Jian Pu, Jian Li. Silver decorated beta-manganese oxide nanorods as an effective cathode electrocatalyst for rechargeable lithium–oxygen battery. Journal of Alloys and Compounds, 2015;626:173–179. doi:10.1016/j.jallcom.2014.11.156

16. Liu Y., Yue X., Li K., Qiao J., Wilkinson D.P., Zhang J. PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds. Coordination Chemistry Reviews, 2016;315:153–177. doi:10.1016/j.ccr.2016.02.002

17. Wang L., Yin F.. Yao C. N-doped graphene as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions in an alkaline electrolyte. International journal of hydrogen energy, 2014;39:15913–15919. doi:10.1016/j.ijhydene.2014.04.071

18. Linge J.M., Erikson H., Sarapuu A., Merisalu M., Rahn M., Matisen L., Sammelselg V., Tammeveski K. Electroreduction of oxygen on nitrogen-doped graphene oxide supported silver nanoparticles. Journal of Electroanalytical Chemistry, 2017;794:197–203. doi:10.1016/j.jelechem.2017.04.022

19. Kalubarme R.S., Ahn C., Park C. Electrochemical characteristics of graphene/manganese oxide composite catalyst for Li-oxygen rechargeable batteries. Scripta Materialia, 2013;68:619–622. doi: 10.1016/j.scriptamat.2012.12.020

20. Trunov A. Analysis of oxygen reduction reaction pathways on Co3O4, NiCo2O4, Co3O4–Li2O, NiO, NiO–Li2O, Pt, and Au electrodes in alkaline medium. Electrochimica Acta, 2013;105:506–513. doi: 10.1016/j.electacta.2013.05.028

21. Wass J-R.T.J., Panas Itai, Asbjornsson J., Ahlberg E. Quantum chemical modelling of oxygen reduction on cobalt hydroxide and oxyhydroxide. Journal of Electroanalytical Chemistry, 2007;599:295–312. doi:10.1016/j.jelechem.2006.05.009

22. Zhang X., Zhao Y., Xu C. Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire mi-crospheres to nanowire paddy fields. Nanoscale, 2014;6:3638–3646. doi:10.1039/C3NR06734C

23. Liu S., Hu L., Xu X., Al-Ghamdi A.A., Fang X. Nickel cobaltite nanostructures for photoelectric and catalytic applications. Small, 2015;11(34):4267–4283. doi:10.1002/smll.201500315

24. Abdel Rahim M.A., Abdel Hameed R.M., Khalil M.W. Nickel as catalyst for the electro-oxidation of methanol in alkaline medium. Journal of Power Sources, 2004;134:160–169. doi: 10.1016/j.jpowsour.2004.02.034

25. Longhi M., Formaro L. An old workhorse of oxide investigations: new features of Co3O4. Journal of Electroanalytical Chemistry, 1999;464:149–157. https://doi.org/10.1016/S0022-0728(99)00012-1

26. Damaskin B.B., Petrii O.A. Introduction to electrochemical kinetics (Vvedenie v elektrokhimicheskuyu kinetiku). Moscow: Vysshaya shkola Publ., 1983 (in Russ.).

27. Huang J., Zhu J., Cheng K., Xu Y., Cao D., Wang G. Preparation of Co3O4 nanowires grown on nickel foam with superior electrochemical capacitance. Electrochimica Acta, 2012;75:273–278. doi: 10.1016/j.electacta.2012.04.131

28. Fu H.Y., Wang Z.Y., Li Y.H., Zhang Y.F. Electrochemical deposition of mesoporous NiCo2O4 nanosheets on Ni foam as high-performance electrodes for supercapacitors. Materials Research Innovations, 2015;19(S4):255–259. http://dx.doi.org/10.1179/1432891715Z.0000000001556

29. Prathap M.U.A., Srivastava R. Synthesis of NiCo2O4 and its application in the electrocatalytic oxidation of methanol. Nano Energy, 2013;2:1046–1053. doi:10.1016/j.nanoen.2013.04.003

30. Fridrikhsberg D.A. Colloidal chemistry (Kurs kolloidnoi khimii). Leningrad: Khimiya Publ., 1984;368 p (in Russ.).

31. Sahraie N.S., Kramm U.I., Steinberg J., Zhang Y., Thomas A., Reier T., Paraknowitsch J-P., Strasser P. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nature Communications, 2015;6:8618. doi: 10.1038/ncomms9618


Review

For citations:


Trofimov A.A., Rudoi V.M., Kuloshvili T.S. COMPARISON OF ELECTROCATALYTIC SITES DENSITY ON ELECTRODES WITH Co3O4 AND NiCo2O4 COATINGS. Alternative Energy and Ecology (ISJAEE). 2018;(1-3):94-102. (In Russ.) https://doi.org/10.15518/isjaee.2018.01-03.094-102

Views: 633


ISSN 1608-8298 (Print)