

CHARGE TRANSPORT FEATURES IN THE COMPOSITE ANODES OF SOLID OXIDE FUEL CELLS: MICROSTRUCTURAL AND IN-SITU RAMAN SPECTROSCOPY ANALYSES
https://doi.org/10.15518/isjaee.2018.04-06.070-081
Abstract
In this work, we carry out the high-resolution electron microscopy of microstructure of grains boundaries of anion and electronic conductors in composite Ni/YSZ anodes before and after study of the current–voltage characteristics of model SOFCs. We propose a mechanism of 2-stage reaction of hydrogen oxidation occurring in the vicinity of triplephase boundary of Ni/YSZ SOFC anodes. On the first stage, metallic nickel is oxidized to nickel oxide by oxygen anion coming from the solid electrolyte membrane. On the second one, hydrogen reduces nickel oxide to metallic nickel, and water is formed. Decrease of the Ni grains size in the vicinity of contact with anion conductor grains is shown to be the result of NiO nano-grains appearance and their consequent reduction to metallic Ni during SOFC operation. High-resolution electron microscopy analysis demonstrates the significant changes in microstructure of grains boundaries of anion and electronic conductors in composite Ni/YSZ anodes after application of load current to SOFC. Nano-sized NiO grains appear in near-boundary regions of Ni grains after current tests. Orientation alignment between YSZ and nano-sized NiO lattices is unambiguous evidence of epitaxial growth of nickel oxide at YSZ surface as on a substrate that is possible only as a result of oxygen anion transport from anion conductor YSZ to the metal surface during current passage through the solid oxide fuel cell. We study the chemical transformations in the electrochemical reaction zone in SOFC composite electrodes depending on the current density passing the SOFC by new “in-situ” Raman spectroscopy technique. Increase of the current passing is shown to lead to growth in the intensity of Raman peak connected with symmetric oscillations of CeO2 group. We connect this result with the change of the cerium cations charge state from Ce3+ to Ce4+ and consider this to be direct proof of the charge transfer in composite anode via oxygen anion transfer.
Keywords
About the Authors
S. I. BredikhinRussian Federation
D.Sc. in Physics and Mathematics, Assistant Professor, Head of the laboratory of Spectroscopy of Defect Structures, Institute of Solid State Physics RAS
SPIN 5173-8118
D. A. Agarkov
Russian Federation
Ph.D. in Physics and Mathematics, Senior Researcher, Institute of Solid State Physics RAS; Head of the Laboratory of Fuel Cells, Moscow Institute of Physics and Technology.
A. S. Aronin
Russian Federation
D.Sc. in Physics and Mathematics, Head of the Laboratory of Structural Research
I. N. Burmistrov
Russian Federation
Ph.D. in Physics and Mathematics, Senior Researcher, Institute of Solid State Physics RAS
SPIN 3853-6670
D. V. Matveev
Russian Federation
Ph.D. in Physics and Mathematics, Senior Researcher, Institute of Solid State Physics RAS
SPIN 7979-2661
F. M. Tsybrov
Russian Federation
Ph.D. Student, Moscow Institute of Physics and Technology.
V. V. Kharton
Russian Federation
Ph.D. in Chemistry, head of the Laboratory of Materials for Electrochemical Technologies, Institute of Solid State Physics RAS
ResearcherID P-6306-2014
References
1. [1] Andersson M., Paradis H., Yuan J., Sunden B. Review of catalysts materials and catalytic steam reforming reactions in SOFC anodes. Int. J. Energy Res., 2011;35:1340–1350.
2. [2] Andersson M., Yuan J., Sunden B. SOFC modeling considering electrochemical reactions at the active three phase boundaries. Int. J. Heat Mass Transfer., 2012;55:773–788.
3. [3] Rossmeisl J., Bessler W.G. Trends in catalytic activity for SOFC anode materials. Solid State Ionics, 2008;178:1694–1700.
4. [4] Bessler W.G., Warnatz J., Goodwin D.G. The influence of equilibrium potential on the hydrogen oxidation kinetics of SOFC anodes. Solid State Ionics, 2007;177:39–40.
5. [5] Babaei A., Jiang S.P., Li J. Electrocatalytic promotion of palladium nanoparticles on hydrogen oxidation on Ni/GDC anodes of SOFCs via spillover. J. Electrochem. Soc., 2009;156:B1022–B1029.
6. [6] Vogler M, Bieberle-Hütter A, Gauckler L, Warnatz J, Bessler WG. Modeling study of surface reactions, diffusion, and spillover at a Ni/YSZ patterned anode. J Electrochem Soc 2009;156:B663-B672.
7. [7] Sharma V., Crozier P.A., Sharma R., Adams J.B. Direct observation of hydrogen spillover in Ni-loaded Pr-doped ceria. Catal. Today, 2012;180:2–8.
8. [8] Bessler W.G., Vogler M., Störmer H., Gerthsen D., Utz A., Weber A., Ivers-Tiffee E. Model anodes and anode models for understanding the mechanisms of hydrogen oxidation in solid oxide fuel cells. Phys. Chem. Chem. Phys., 2010;12:13888–13903.
9. [9] Shin H.H., McIntosh S. Insights into hydrogen oxidation on SOFC anode materials by isotopic exchange. ECS Electrochem. Lett., 2013;2:F88–F91.
10. [10] An W., Gatewood D., Dunlap B., Turner C.H. Catalytic activity of bimetallic nickel alloys for solid oxide fuel cell anode reactions from density-functional theory. J. Power Sources, 2011;196:4724–4728.
11. [11] Shishkin M., Ziegler T. Hydrogen oxidation at the Ni/yttria-stabilized zirconia interface: a study based on density functional theory. J. Phys. Chem. C, 2010;114:11209–11214.
12. [12] Dasari H.P., Park S.Y., Kim J., Lee J.H., Kim B.K., Je H.J., Lee H.W., Yoon K.J. Electrochemical characterization of Ni-yttria stabilized zirconia electrode for hydrogen production in solid oxide electrolysis cells. J. Power Sources, 2013;240:721–728.
13. [13] Sharma V., Crozier P.A., Sharma R., Ad-ams J.B. Direct observation of hydrogen spillover in Ni-loaded Pr-doped ceria. Catal. Today, 2012;180:2–8.
14. [14] Vogler M., Bessler W.G. The role of interstitial hydrogen species in Ni/YSZ patterned anodes: a 2d modeling study. ECS Trans., 2009;2:1957–1966.
15. [15] Parkes M., Refson K., d’Avezac M., Offer G., Brandon N.P., Harrison N. Determining surface chemistry and vibrational properties of SOFC anode materials through ab initio calculations. ECS Trans., 2013;57:2419–2427.
16. [16] Mogensen M., Høgh J., Hansen K.V., Jacobsen T. A Critical Review of Models of the H2/H2O/Ni/SZ Electrode Kinetics. ECS Transactions, 2007;7:1329– 1338.
17. [17] Shishkin M., Ziegler T. Ab initio study of activity and coke-tolerance of Ni/CeZrO2 anodes of SOFC as a function of zirconia concentration. ECS Trans., 2011;1:1611–1619.
18. [18] Presvytes D., Vayenas C.G. Mathematical mod-eling of the operation of SOFC nickel-cermet anodes. Ionics, 2007;13:9–18.
19. [19] Hansen J.B. Correlation sulfur poisoning of SOFC nickel anodes by a Temkin isotherm. Electrochem. Solid-State Lett., 2008;11:B178–B180.
20. [20] Bredikhin I., Sinitsyn V., Aronin A., Kuritsyna I., Bredikhin S. Microstructural and Electrochemical Study of Charge Transport and Reaction Mechanisms in Ni/YSZ Anode. ECS Transactions, 2007;7:1533–1540.
21. [21] Tsipis E.V., Kharton V.V. Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. II. Electrochemical reaction vs. materials science aspects. J. Solid State Electrochem., 2008;12:1367– 1391.
22. [22] Bokov A.A., Nikonov A.V. Formation mechanism of monoclinic ZrO2 at the contact of YSZ with CuO. Inorg. Mater., 2015;51:553–558.
23. [23] Agarkov D.A., Burmistrov I.N., Tsybrov F.M., Tartakovskii I.I., Kharton V.V., Bredikhin S.I. Kinetics of NiO reduction and morphological changes in composite anodes of solid oxide fuel cells: estimate using Ra-man scattering technique. Russ. J. Electrochem., 2016;52:600–605.
24. [24] Agarkov D.A., Burmistrov I.N., Tsybrov F.M., Tartakovskii I.I., Kharton V.V., Bredikhin S.I., Kveder V.V. Analysis of interfacial processes at the SOFC electrodes by in-situ Raman spectroscopy. ECS Trans., 2015;68:2093–2103.
25. [25] Agarkov D. Study of relations between micro-structure and charge transport processes in planar SOFC composite electrodes (Izuchenie vzaimosvyazi mikrostruktury i protsessov perenosa zaryada v kompozitsionnykh elektrodakh TOTE planarnoi geometrii), Ph.D. thesis, 2016.
26. [26] Burmistrov I., Agarkov D., Bredikhin S., Nepochatov Yu., Tiunova O., Zadorozhnaya O. Multi-layered electrolyte-supported SOFC based on NEVZ-Ceramics membrane. ECS Trans., 2013;57:917–923.
27. [27] Burmistrov I.N., Agarkov D.A., Trybrov F.M., Bredikhin S.I. Preparation of membrane-electrode assemblies of solid oxide fuel cells by co-sintering of electrodes. Russ. J. Electrochem., 2016;52:669–677.
28. [28] Burmistrov I.N., Agarkov D.A., Korovkin E.V., Yalovenko D.V., Bredikhin S.I. Fabrication of membrane-electrode assemblies for solid oxide fuel cells by joint sintering of electrodes at high temperatures. Russ. J. Electrochem., 2017;53:873–879.
29. [29] Burmistrov I.N., Agarkov D.A., Tartakovskii I.I., Kharton V.V., Bredikhin S.I. Performance optimization of cermet SOFC anodes: an evaluation of nanostructured Ni. ECS Trans., 2015;68:1265–1274.
30. [30] Agarkov D.A., Burmistrov I.N., Tsybrov F.M., Tartakovskii I.I., Kharton V.V., Bredikhin S.I. In-situ Raman spectroscopy analysis of the interfaces between Ni-based SOFC anodes and stabilized zirconia electrolyte. Solid State Ionics, 2017;302:133–137.
31. [31] Balaguer M., Solis C., Serra J.M. Structural-transport properties relations on Ce1-xLnxO2-d system (Ln-Gd, La, Tb, Pr, Eu, Yb, Nd) and effect of cobalt addition. J. Phys. Chem. C, 2012;116:7975–7982.
32. [32] Anyaneya K.C., Nayaka G.P., Manjanna J., Govindaraj G., Ganesha K.N. Studies on structural, morphological and electrical properties of Ce0.8Ln0.2O2-d (Ln = Y3+, Gd3+, Sm3+, Nd3+ and La3+) solid solutions prepared by citrate complexation method. J. Alloys Compd., 2014;585:594–601.
33. [33] Zarkov A., Mikoliunaite L., Katelnikovas A., Tautkus S., Kareiva A. Preparation by different methods and analytical characterization of gadolinium-doped ceria. Chem. Pap., 2018;72:129–138.
34. [34] Guo M., Lu J., Wu Y., Wang Y., Luo M. UV and visible Raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir, 2011;27:3872–3877.
35. [35] Lughi V., Clarke D.R. Temperature dependence of the yttria-stabilized zirconia Raman spectrum. J. Appl. Phys., 2008;101:053524-1-053524-6.
Review
For citations:
Bredikhin S.I., Agarkov D.A., Aronin A.S., Burmistrov I.N., Matveev D.V., Tsybrov F.M., Kharton V.V. CHARGE TRANSPORT FEATURES IN THE COMPOSITE ANODES OF SOLID OXIDE FUEL CELLS: MICROSTRUCTURAL AND IN-SITU RAMAN SPECTROSCOPY ANALYSES. Alternative Energy and Ecology (ISJAEE). 2018;(4-6):70-81. (In Russ.) https://doi.org/10.15518/isjaee.2018.04-06.070-081