

PRIMARY TESTING OF AUTOMATED DUAL-AXIS SOLAR TRACKER IN THE CLIMATIC CONDITIONS OF THE ORENBURG REGION AS THE PROSPECTS FOR THE ESTABLISHMENT OF A HARDWARE-SOFTWARE COMPLEX
https://doi.org/10.15518/isjaee.2018.07-09.043-054
Abstract
One of the reasons for the high cost of electricity generated by statically located solar power plants is the low efficiency of photoelectric converters. Using high-precision solar tracking system will solve this problem. The paper provides a detailed description of the developed modernized structure of an autonomous solar power station with statically and dynamically located modules of solar batteries and a physical model of an automated dual-axis solar tracker. The presented development allows us to increase energy efficiency of solar batteries by precision pointing dynamically located solar modules on the Sun in two coordinates (azimuth and declination angle) during the day. In addition, it is shown that another feature of this photovoltaic system is that statically and dynamically located photoelectric modules are equipped with two types of solar cells – monocrystalline and polycrystalline that leads to an additional gain in the generation of electrical power regardless of the clouds. The ways of increasing the reliability of the autonomous solar power plant operation are mentioned. We have considered the solar tracking systems in the Russian Federation (Orenburg, Tomsk, Chelyabinsk regions) and abroad (United States of America, India, Iran, Turkey, Taiwan), and have justified the necessity of using photovoltaic systems with solar trackers. Moreover, we have successfully tested the developed autonomous solar power plant; the essence of the tests is in an experimental comparison of power generation using statically and dynamically located solar cell modules. The results of the experiments have showed that the use of a solar module with a precision dual-axis solar tracking system, in comparison with a statically located module, makes it possible to increase the efficiency of a photovoltaic installation by 50 %. Thus, experimental evidence of the effectiveness of the automate d tracking system application has been obtained. The work can be useful in the design of energy-efficient photovoltaic installations with the solar tracking system.
About the Authors
S. V. MitrofanovRussian Federation
A. U. Nemaltsev
Russian Federation
D. K. Baykasenov
Russian Federation
References
1. Arzhanov K.V. An automated discrete-continuous sun-tracking system of autonomous photovoltaic power plants with stepper motors (Avtomatizirovannaya sistema nepreryvno-diskretnogo slezheniya za Solntsem avtonomnykh fotoelektricheskikh energoustanovok s ispol'zovaniem shagovykh dvigatelei): Ph.D. diss (engineering). Tomsk, 2016,178 p. (in Russ.).
2. Arzhanov K.V. Dual-axis solar tracking system (Dvukhkoordinatnaya sistema navedeniya solnechnykh batarei na Solntse), Bulletin of the Tomsk Polytechnic University, 2014;324(4):139–146 (in Russ.).
3. Arzhanov K.V. Sun Tracking Photovoltaic Systems (Fotoelektricheskaya energeticheskaya ustanovka s navedeniem na Solntse), Energetika Rossii V XXI veke. Innovatsionnoe razvitie i upravlenie, 2015:579–581 (in Russ.).
4. Petrusev A.S. Solar energy for power supply in remote regions (Solnechnaya energetika dlya energosnabzheniya udalennykh raionov), Resursoeffektivnye sistemy v upravlenii i kontrole: vzglyad v budushchee, 2015;1:155–158 (in Russ.).
5. Petrusev A.S. Increasing the energy efficiency of solar batteries of using single-axis solar tracker and acrylic concentrator (Povyshenie effektivnosti solnechnykh batarei s pomoshch'yu odnoosnogo trekera i akrilovogo kontsentratora), Sovremennye tekhnika i tekhnologii, 2014:37–38 (in Russ.).
6. Yurchenko A.V. A solar tracking system installed with photovoltaic installation (Sistema slezheniya za Solntsem dlya solnechnoi energoustanovki), Resursoeffektivnye tekhnologii dlya budushchikh pokolenii, 2010:210–221 (in Russ.).
7. Kitaeva M., Yurchenko A. Efficiency of PV systems with solar trackers for Russian regions. Proceedings – 7th International Forum on Strategic Technology (IFOST–2012), 2012;2:103–106 (in Eng.).
8. Shinyakov Y.A., Otto A.I., Osipov A.V., Chernaya M.M. Optimizing peak-holding controller solar battery autonomous energy installation. Alternative Energy and Ecology (ISJAEE) 2015;(8–9):12–18. (In Russ.).
9. Savrasov F.V. Energy-efficient power supply systems with photovoltaic power plants (Energoeffektivnye sistemy elektrosnabzheniya s fotoelektrostantsiyami): theses of Ph.D. diss. (engineering). Tomsk, 2013, 21 p. (In Russ.).
10. Rakhmatulin I.R. Design complex energy-efficient solar-powered desalination plant with solar tracking system (Razrabotka kompleksnoi energoeffektivnoi solnechnoi opresnitel'noi ustanovki s sistemoi slezheniya za Solntsem) : theses of Ph.D. diss. (engineering). Chelyabinsk, 2015, 19 p. (in Russ.).
11. Rakhmatulin I.R. System for orienting solar thermal collector (Sistema orientatsii solnechnykh kollektorov), Electrotechnical Systems and Complexes, 2012;20:247–255 (in Russ.).
12. Rakhmatulin I.R. Mathematical model of solar-powered desalination plant with solar tracking system (Matematicheskaya model' solnechnoi opresnitel'noi ustanovki s ustroistvom slezheniya za solntsem), Bulletin of the South Ural State University, 2014;1:110–115 (in Russ.).
13. State Standart R 57229-2016 (IEC 62817:2014). Phototovoltaic system. Solar tracking system. Technical specifications. Moscow, Standartinform Publ., 2017, 67 p. (in Russ.).
14. Lee K., Chien C.-W., Lee B., Lamourex A., Shlian M., Shtein M., Ku P.C., Forrest S. Origami Solar-Tracking Concentrator Array for Planar Photovoltaics. ACS Photonics, 2016; 3(11):2134–2140 (in Eng.).
15. Saranya Nair M., Bhatia K. A solar tracker assisted automatic irrigation system for agricultural fields. International Journal of Civil Engineering and Technology (IJCIET), 2017;8(10):279–287 (in Eng.).
16. Azizi K., Ghaffari A. Design and Manufacturing of a High-Precision Sun Tracking System Based on Image Processing. International Journal of Photoenergy, 2013;2013:1–7 (in Eng.).
17. Gerek Ö.N., Filik Ü.B. Efficiency analysis of the solar tracking PV systems in Eskişehir region. Anadolu university journal of science and technology A – Applied Sciences and Engineering, 2017;18(1):209– 217 (in Eng.).
18. Ozcelik S., Prakash H., Challoo R. Two-axis solar tracker analysis and control for maximum power generation. Procedia Computer Science, 2011;6:457– 462 (in Eng.).
19. Abid A.J. Arduino based blind solar tracking controller. International Journal of Open Information Technologies, 2017;5(10):24–29 (in Eng.).
20. Kassem A., Hammad M. A microcontroller-Based Multi-Function Solar Tracking System. 2011 IEEE International Systems Conference, 2011:13–16 (in Eng.).
21. Mousazadeh H., Keyhani A., Javadi A., Sharifi A. A review of principle and sun-tracking methods for maximizing solar systems output. Renewable and Sustainable Energy Reviews, 2009:1800–1818 (in Eng.).
22. Wang J.-M., Lu C.-L. Design and Implementation of a Sun Tracker with a Dual-Axis Single Motor for an Optical Sensor-Based Photovoltaic System. Sensors, 2013;13(3):3157–3168 (in Eng.).
23. Magibalan S., Saravanan M., Sathees kumar G., Sathish, C. Saravanan G. Fabrication of dual axis solar tracking system. International Journal of Emerging Technologies and Innovative Research, 2018;5(3):1109– 1113 (in Eng.).
24. Mitrofanov S.V., Nemal'tsev A.Yu. Method of calculating the power of autonomous solar power plants for lighting load of laboratory of energy-saving and energy efficiency (Metodika rascheta moshchnosti avtonomnoi solnechnoi elektrostantsii dlya nuzhd osveshcheniya laboratorii energosberezheniya i energoeffektivnosti), Universitetskii kompleks kak regional'nyi tsentr obrazovaniya, nauki i kul'tury: materialy Vserossiiskoi nauchno-metodicheskoi konferentsii, 2017:333–337 (in Russ.).
25. Nemal'tsev A.Yu., Mitrofanov S.V. Description of the dual-axis solar tracker working principle (Opisanie i printsip raboty avtomatizirovannogo dvukhkoordinatnogo solnechnogo trekera), Energetika: sostoyanie, problemy, perspektivy : Trudy VIII Vserossiiskoi nauchno-tekhnicheskoi konferentsii, 2016:12–14 (in Russ.).
26. Mitrofanov S.V., Potekhenchenko A.V., Nemal'tsev A.Yu. Development of the control system of a solar tracker based on the Arduino microcontroller (Razrabotka sistemy upravleniya solnechnym trekerom na osnove mikrokontrollera Arduino), Universitetskii kompleks kak regional'nyi tsentr obrazovaniya, nauki i kul'tury: materialy Vserossiiskoi nauchno-metodicheskoi konferentsii, 2017:470–473 (in Russ.).
27. Mitrofanov S.V., Nemal'tsev A.Yu. Using mi-crocontrollers in a solar tracking control system (Ispol'zovanie mikrokontrollerov v sisteme upravleniya solnechnym trekerom), Universitetskii kompleks kak regional'nyi tsentr obrazovaniya, nauki i kul'tury: materialy Vserossiiskoi nauchno-metodicheskoi konferentsii, 2017:345–347 (in Russ.).
28. Nemal'tsev A.Yu., Mitrofanov S.V. Portable solar power plant with autonomous solar tracking system (Perenosnaya solnechnaya elektrostantsiya s avtonomnoi sistemoi slezheniya za solntsem), Energetika: sostoyanie, problemy, perspektivy: Trudy VII Vserossiiskoi nauchno-tekhnicheskoi konferentsii, 2014:40–44 (in Russ.).
29. Mitrofanov S.V., Potekhenchenko A.V. Wind protection for solar power plant (Sistema bezopasnosti solnechnoi elektrostantsii ot poryvov vetra), Universitetskii kompleks kak regional'nyi tsentr obrazovaniya, nauki i kul'tury: materialy Vserossiiskoi nauchno-metodicheskoi konferentsii, 2017:466–469 (in Russ.).
30. Mitrofanov S.V., Potekhenchenko A.V. Method of protection of solar power station against accumulation of snow and ice (Metod zashchity solnechnoi elektrostantsii ot nakopleniya snega i l'da), Universitetskii kompleks kak regional'nyi tsentr obrazovaniya, nauki i kul'tury: materialy Vserossiiskoi nauchno-metodicheskoi konferentsii, 2017:462–465 (in Russ.).
Review
For citations:
Mitrofanov S.V., Nemaltsev A.U., Baykasenov D.K. PRIMARY TESTING OF AUTOMATED DUAL-AXIS SOLAR TRACKER IN THE CLIMATIC CONDITIONS OF THE ORENBURG REGION AS THE PROSPECTS FOR THE ESTABLISHMENT OF A HARDWARE-SOFTWARE COMPLEX. Alternative Energy and Ecology (ISJAEE). 2018;(7-9):43-54. (In Russ.) https://doi.org/10.15518/isjaee.2018.07-09.043-054