

MODERN POLYMER COMPOSITE MATERIALS AND POSSIBILITIES OF THEIR LASER MACHINING
https://doi.org/10.15518/isjaee.2018.10-12.082-104
Abstract
The widespread introduction of polymer composite materials in key sectors of modern industry such as wind and hydropower engineering, aircraft and machinery ones, etc. due to the high level of their strength properties, versatility and ability to provide the lowest weight of parts of products raises the problem of their processing. Traditional processing methods (mechanical and abrasive water jet machining) have some significant shortcomings: high tool wear, delamination due to vibration and shock loadings, limitations on the cutting contour and others. The paper deals with the polymer composites laser machining which is considered to be one of the promising solutions for elimination of conventional methods disadvantages due to a contact-free, flexible and high-performance processing method. As a result of analysis of theoretical and experimental domestic and foreign works, the use of industrial ytterbium fiber lasers are found to be a promising direction for high-quality and productive processing of polymer composite materials. The results of studies using the experimental technological setups on the basis of nanosecond pulsed and continuous ytterbium fiber lasers with a radiation power up to 1 kW and optical scanning systems based on the biaxial galvo scanners and focusing F-Theta lenses with beam travel speeds up to 20 m / s have shown that the laser multi-pass machining of polymer composite materials with layer-by-layer removal (ablation) of the material due to the evaporation mechanism allows for precise and high quality cutting and drilling of carbon and glass fiber reinforced plastics and carbon plastics with a thickness 1–3 mm.
About the Authors
S. A. KotovRussian Federation
Sergey Kotov – Engineer
1 Academician Vvedenskii Sq., Fryazino, Moscow reg., 141190
N. A. Lyabin
Russian Federation
Nikolay Lyabin – D.Sc. in Engineering, Head of Laboratory
2а Vokzalinaya St., Fryazino, Moscow region, 141190
M. А. Kazarian
Russian Federation
Mishik Kazaryan – D.Sc. in Physics and Mathematics, Leading Researcher
53 Leninskiy Av., Moscow, 119991
V. I. Sachkov
Russian Federation
Viktor Sachkov – D.Sc. in Chemistry, Head of Laboratory
1 Novosobornaya Sq., Tomsk, 634050
References
1. Mikhailin Yu. A. Fibrous Polymer Composite Materials in Technology (Voloknistye polimernye kompozitsionnye materialy v tekhnike). SPb.: Nauchnye osnovy i tekhnologii Publ., 2015 (in Russ.).
2. Perepelkin K.E. Reinforcing fibers and fibrous polymeric composites (Armiruyushchie volokna i voloknistye polimernye kompozity). SPb.: Nauchnye osnovy i tekhnologii Publ., 2015 (in Russ.).
3. Nakhodkin P.A. “Black wings” are preparing for flights (“Chernye kryl'ya” gotovyatsya k poletam). Aviaindustriya, 2013;2:42−47 (in Russ.).
4. Savin S.P. The use of modern polymer composite materials in the design of the airframe of the MS-21 aircraft (Primenenie sovremennykh polimernykh kompozitsionnykh materialov v konstruktsii planera samoletov semeistva MS-21). Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2012;14(4):686−693 (in Russ.).
5. Irving P.E., Soutis C.Polymer Composites in the Aerospace Industry. Cambridge: Woodhead Publishing, 2015.
6. Mikhailin Yu.A. Structural polymer composite materials (Konstruktsionnye polimernye kompozitsionnye materialy). SPb.: Nauchnye osnovy i tekhnologii Publ., 2010 (in Russ.).
7. Sredne-Nevskii sudostroitel'nyi zavod [Erecourse]. Available on: http://snsz.ru – SNSZ (13.03.2018)
8. Kompozitnoe korablestroenie [E-recourse]. Available on: http://compositeshipbuilding.ru – Kompozitnoe korablestroenie (13.03.2018)
9. APATEK-Prikladnye i perspektivnye tekhnologii [E-recourse]. Available on: http://www.apatech.ru – APATEK (13.03.2018)
10. AVANGARD. Proektirovanie i proizvodstvo izdelii iz stekloplastika, polimernykh i kompozitsionnykh materialov [E-recourse]. Available on: http://www.avangard-plastik.rf – AVANGARD (13.03.2018)
11. ONPP Tekhnologiya im. A.G. Romashina [Erecourse]. Available on: https://technologiya.ru – Gosudarstvennyi nauchnyi tsentr RF (13.03.2018)
12. Raskutin A.E. Technological features of machining of composite materials in the manufacture of structural parts (Tekhnologicheskie osobennosti mekhanoobrabotki kompozitsionnykh materialov pri izgotovlenii detalei konstruktsii). Trudy VIAM, 2016;9:106–118 (in Russ.).
13. Jamal Y., Sheikh-Ahmad. Machining of Polymer Composites. Berlin: Springer, 2009
14. Panov D.V., Korotkov A. N., Saushkin B. P. Composites and machines for their processing (Kompozity i stanki dlya ikh obrabotki). RITM, 2014;7:32–36 (in Russ.).
15. Komarov G.V. Connecting parts from polymer materials (Soedinenie detalei iz polimernykh materialov). SPb.: Professiya Publ., 2006 (in Russ.).
16. Grigor'yants A.G., Kryukov V.G., Savchuk A.N., Budanov A.D., Trubitsyn A.V. Features of laser cutting of carbon plastics (Osobennosti lazernoi rezki ugleplastikov). Svarochnoe proizvodstvo, 1991;5:4–6 (in Russ.).
17. Grigor'yants A.G., Sokolov A. A. Laser processing of nonmetallic materials (Lazernaya obrabotka nemetallicheskikh materialov). Moscow: Vysshaya shkola Publ., 1988 (in Russ.).
18. Grigor'yants A.G., Shiganov I.N., Misyurov A.I. Technological processes of laser processing (Tekhnologicheskie protsessy lazernoi obrabotki). Moscow: Izd-vo MGTU im. N.E. Baumana Publ., 2008 (in Russ.).
19. Emmelmann С. [et al.]. Analysis of laser ablation of CFRP by ultra-short laser pulses with short wavelength. Physics Procedia, 2011;12(A):565−571.
20. Stock J., Zaeh M., Conrad M.Remote laser cutting of CFRP: Improvements in the cut surface. Physics Procedia, 2012;39:161−170.
21. Gureev D.M., Kuznetsov S.I., Petrov A.L. Laser cutting of carbon composite materials (Lazernyi raskroi uglerodnykh kompozitsionnykh materialov). Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 1999;2:255−264 (in Russ.).
22. Herzog D. [et al.] Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP. International Journal of Machine Tools and Manufacture, 2008;48:1464−1473.
23. Wolynski A. [et al.] Laser ablation of CFRP using picosecond laser pulses at different wavelengths from UV to IR. Physics Procedia, 2011;12:292−301.
24. Takahashi K. [et al.] Heat conduction analysis of laser CFRP processing with IR and UV laser light. Composites: Part A applied science and manufacturing, 2016;84:114−122.
25. CaprinoG., Tagliaferri V. Maximum cutting speed in laser cutting of fiber reinforced plastics. International Journal of Machine Tools and Manufacture, 1988;48(4):389−398.
26. Cenna A.A., Methew P. Evaluation of cut quality of fibre-reinforced plastics–a review. Int. J. Mach. Tools Manufacture, 1997;37(6):723−736.
27. Negarestani R., Li L.Laser machining of fibre− reinforced polymeric composite materials / R. Negarestani // Negarestani R. Machining Technology for Composite Materials. Cambridge, 2012, pp. 288−308.
28. Li Z.L. [et al.]. Laser machining of carbon fibrereinforced plastic composites // Advances in laser materials processing / Cambridge, 2010, pp. 136−177.
29. Chryssolouris G., Salonitis K.Fundamentals of laser machining of composites. Machining Technology for Composite Materials. − Cambridge, 2012, pp. 266−287.
30. Tarasov V.A., Galinovskii A.L. Problems and prospects for the development of hydrojet technologies in rocket and space technology (Problemy i perspektivy razvitiya gidrostruinykh tekhnologii v raketnokosmicheskoi tekhnike). Inzhenernyi zhurnal: nauka i innovatsii, 2013;3:1−12 (in Russ.).
31. Stepanov Yu.S., Barsukov G.V., Alyushin E.G. Modern technologies of hydroand hydroabrasive processing of blanks (Sovremennye tekhnologii gidroi gidroabrazivnoi obrabotki zagotovok). Naukoemkie tekhnologii v mashinostroenii. 2012;6:11−17 (in Russ.).
32. Stepanov Yu.S., Burnashov M.A. Cutting sheet nonmetallic materials with a high-pressure water jet (Raskroi listovykh nemetallicheskikh materialov vodoledyanoi struei vysokogo davleniya). Naukoemkie tekhnologii v mashinostroenii, 2014;8:23−28 (in Russ.).
33. Matyushev I.I. Reference book of the designer (Spravochnik konstruktora). SPb.: Politekhnika Publ, 2006, 1027 p. (in Russ.).
34. Serebrenitskii P.P. A brief reference book of the technologist-machine builder (Kratkii spravochnik tekhnologa-mashinostroitelya). SPb.: Politekhnika Publ., 2007 (in Russ.).
35. Anur'ev V.I. Handbook of the designer-machine builder (Spravochnik konstruktora-mashinostroitelya). Moscow: Mashinostroenie Publ., 2001 (in Russ.).
36. Wu C., Wu X., Huang C. Ablation behaviors of carbon reinforced polymer composites by laser of different operation modes. Optics and laser technology, 2015;73:23−28.
37. Ushida K. [et al.] Characteristic analysis of CFRP cutting with nanosecond pulsed laser. Journal of advanced research in physics, 2012;3(1):1−3.
38. Bluemel S. [et al.]. Comparative study of achievable quality cutting carbon fibre reinforced thermoplastics using continuous wave and pulsed laser sources. Physics Procedia, 2014;56:1143−1152.
39. Riveiro A. [et al.]. Experimental study on the CO2 laser cutting of carbon fiber reinforced plastic composite. Composite Part A: Applied Science and Manufacturing, 2012;43:1400−1409.
40. Leone C., Genna S., Tagliaferri V. Fibre laser cutting of CFRP thin sheets by multi-passes scan technique. Optics and lasers in engineering, 2014;53:43−50.
41. Voisey K.T. [et al.]. Fibre swelling during laser drilling of carbon fibre composites. Optics and lasers in engineering, 2006;44(11):1185−1197.
42. Schneider F., Wolf N., Petring D. High power laser cutting of fiber reinforced thermoplastic polymers with cwand pulsed lasers. Physics Procedia, 2013;41:415−420.
43. Goeke A., Emmelmann C. Influence of laser cutting parameters on CFRP part quality. Physics Procedia, 2010;5(B):253−258.
44. Takahashi K. [et al.] Influence of laser scanning conditions on CFRP processing with a pulsed fiber laser. Journal of materials processing technology, 2015;222:110−121.
45. Leone C. [et al.]. Investigation of CFRP laser milling using a 30 W Q-switched Yb:YAG fiber laser: Effect of process parameters on removal mechanisms and HAZ formation. Composite Part A: Applied science and manufacturing, 2013;55:129−142.
46. Klotzbach A., Hauser M., Beyer E. Laser cutting of carbon fiber reinforced polymers using highly brilliant laser beam sources. Physics Procedia, 2011;12(A):572−577.
47. Niino H. [et. al.]. Laser cutting of carbon fiber reinforced thermos-plastic (CFRTP) by IR laser Irradiation. Journal of laser Micro/Nanoengineering, 2014;9(2):180−186.
48. Lima M. [et al.]. Laser processing of carbon fiber reinforced polymer composite for optical fiber guidelines. Physics Procedia, 2013;41:572−580.
49. Akshay H. [et al.]. Machining damage in FRPs: Laser versus conventional drilling. Composite Part A: Applied Science and Manufacturing, 2016;82:42−52.
50. Furst A. [et al.]. Remote laser processing of composite materials with different opto-thermic properties. Physics Procedia, 2013;41:P389−398.
51. Dittmar H., Gabler F., Stute U. UV-laser ablation of fibre reinforced composites with ns-pulses. Physics Procedia, 2013;41:266−275.
52. Tekhnologicheskie rekomendatsii “Lazernaya rezka polimernykh kompozitsionnykh materialov i metallokompozitsionnykh materialov”. No. 1.4.22722012. − Vveden. 2012-07-01. Natsional'nyi Institut Aviatsionnykh Tekhnologii Publ., 2012.
53. Zaeh M. [et al.]. Material processing with remote technology–revolution or Evolution. Physics Procedia, 2010;5(part A):19−33.
54. Promyshlennye volokonnye itterbievye lazery [Erecourse]. Available on: http://www.ipgphotonics.com/ru – Lazery (13.03.2018).
55. Veiko V.P. Technological lasers and laser radiation (Tekhnologicheskie lazery i lazernoe izluchenie). SPb: SPbGU ITMO Publ., 2007. (in Russ.).
56. Vaks E.D., Milen'kii M.N., Saprykin L.G. The practice of precision laser processing (Praktika pretsizionnoi lazernoi obrabotki). Moscow: Tekhnosfera Publ., 2013 (in Russ.).
57. Weber R. [et al.]. Minimum damage in CFRP laser processing. Physics Procedia, 2011;12(B):302−307.
58. Weber R. [et al.]. Short-pulse laser processing of CFRP. Physics Procedia, 2012;39:137−146.
59. Mucha P. [et al.] Calibrated heat flow model for determining the heat conduction losses in laser cutting of CFRP. Physics Procedia, 2014;56:1208−1217.
60. Ohkubo T., Tsukamoto M., Sato Y.Numerical simulation of laser beam cutting of carbon fiber reinforced plastics. Physics Procedia, 2014;56:1165−1170.
61. Virtual process chain for simulation of heat affected zones during laser cutting of carbon fibrereinforced plastics [E-recourse]. Available on: http://www.scansonic.de/files/publikationen/nafems_sim ulation_of_composites.pdf (14.03.2018).
62. Xu H., Hu J. Modeling of the material removal and heat affected zone formation in CFRP short pulsed laser processing. Physics Procedia, 2017;45:354−364.
63. Okhubo T. [et al.]. Three-dimensional numerical simulation during laser processing of CFRP. Applied surface science, 2017;417:104−107.
64. Kotov S.A., Lyabin N.A., Blinkov V.V., Kondratyuk D.I., Bibik O.B, Popov D.S. Experimental evaluation of the regimes of dimensional processing of carbon plastics by pulsed nanosecond radiation of an ytterbium fiber laser (Eksperimental'naya otsenka rezhimov razmernoi obrabotki ugleplastikov impul'snym nanosekundnym izlucheniem volokonnogo itterbievogo lazera). Vestnik MGTU im. N.E. Baumana. Seriya “Mashinostroenie”, 2017;1:73−85 (in Russ.).
65. Kotov S. A. Experimental study of the effect of process gas on the quality of processing of carbon plastics by nanosecond radiation from a fiber ytterbium laser (Eksperimental'noe issledovanie vliyaniya tekhnologicheskogo gaza na kachestvo obrabotki ugleplastikov nanosekundnym izlucheniem volokonnogo itterbievogo lazera). Lazery v Nauke, Tekhnike, Meditsine, 2016;27:27−31 (in Russ.).
66. Kotov S.A., Blinkov V.V., Kondratyuk D.I. Dependence of the quality of the part from thermosetting carbon fiber reinforced plastic on the type of processing (Zavisimost' kachestva detali iz termoreaktivnogo ugleplastika ot vida obrabotki). Aviatsionnaya promyshlennost', 2016;4:43−47 (in Russ.).
67. Kotov S.A. High technology of increasing the efficiency of dimensional processing of carbon plastics by pulsed nanosecond radiation from a fiber ytterbium laser (Naukoemkaya tekhnologiya povysheniya effektivnosti razmernoi obrabotki ugleplastikov impul'snym nanosekundnym izlucheniem volokonnogo itterbievogo lazera). Naukoemkie tekhnologii v mashinostroenii, 2017;1:30−36 (in Russ.).
68. Kotov S.A., Lyabin N.A. Experimental study of the influence of the wavelength of laser radiation on the efficiency of dimensional processing of CFRP (Eksperimental'noe issledovanie vliyaniya dliny volny lazernogo izlucheniya na effektivnost' razmernoi obrabotki ugleplastika). Vestnik NIYaU “MIFI”, 2017;6(5):396−404 (in Russ.).
69. Kotov S.A., Popov D.S., Blinkov V.V., Kondratyuk D.I. Quality and evaluation of the efficiency of dimensional processing of carbon plastics by radiation from fiber lasers (Kachestvo i otsenka effektivnosti razmernoi obrabotki ugleplastikov izlucheniem volokonnykh lazerov). Aviatsionnaya promyshlennost', 2017;3:42−47 (in Russ.).
70. Kotov S.A., Antonenko V.I., Popov D.S. Technology of multi-pass processing of CFRP by a pulsed nanosecond fiber ytterbium laser (Tekhnologiya mnogoprokhodnoi obrabotki ugleplastika impul'snym nanosekundnym volokonnym itterbievym lazerom). Lazery v Nauke, Tekhnike, Meditsine, 2017;28:33−37 (in Russ.).
71. Grigor'yants A.G., Shiganov I.N., Infimovskii Yu.Yu., Blinkov V.V., Kotov S.A. High technology of increasing the efficiency of dimensional processing of carbon plastics by the continuous emission of a fiber ytterbium laser (Naukoemkaya tekhnologiya povysheniya effektivnosti razmernoi obrabotki ugleplastikov nepreryvnym izlucheniem volokonnogo itterbievogo lazera), Naukoemkie tekhnologii v mashinostroenii. 2017;11:33−39 (in Russ.).
Review
For citations:
Kotov S.A., Lyabin N.A., Kazarian M.А., Sachkov V.I. MODERN POLYMER COMPOSITE MATERIALS AND POSSIBILITIES OF THEIR LASER MACHINING. Alternative Energy and Ecology (ISJAEE). 2018;(10-12):82-104. (In Russ.) https://doi.org/10.15518/isjaee.2018.10-12.082-104