Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

НЕРАВНОВЕСНАЯ ПОРОЭЛЕКТРОЭЛАСТИЧНАЯ ТЕОРИЯ ПОЛИМЕРНОГО ЭЛЕКТРОЛИТА В УСЛОВИЯХ ЭЛЕКТРОЛИЗА ВОДЫ

https://doi.org/10.15518/isjaee.2018.13-15.087-112

Полный текст:

Аннотация

Представлена неравновесная пороэлектроэластичная теория полимерного электролита в условиях электролиза воды с целью дальнейшего теоретического описания процессов массопереноса в слоях мембранно-электродного блока. Проведен обзор и анализ моделей электрохимических и массообменных процессов в электролизерах, изучены проблемы физико-химического описания этих моделей. Сделан вывод о необходимости использования моделей сорбции воды и свеллинга полимерного электролита (здесь и далее вместо термина «набухание» применительно к мембране употребляется более близкий по смыслу термин «свеллинг», от англ. swelling). Проанализированы модели сорбции воды и свеллинга полимерного электролита. В результате сделан вывод о том, что существующая пороэлектроэластичная теория после модификации является наиболее пригодной для применения в неравновесных условиях в процессе электролиза. Рассмотрено базовое уравнение баланса давлений классической равновесной пороэлектроэластичной теории для полимерного электролита. Проведена модификация данной теории с целью дальнейшего моделирования процессов массообмена. На основе экспериментальных данных, доступных в открытых источниках, проанализированы свойства и особенности упругих сил в полимерном электролите, затем уточнены зависимости упругих сил в полимерном электролите от свеллинга и температуры. С учетом существующих экспериментальных данных по проницаемости газов в полимерном электролите и характера свеллинга полимерного электролита при контакте с жидкой водой получены параметры неравновесной пороэлектроэластичной теории применительно к условиям электролиза воды.

Об авторах

А. А. Калинников
Национальный исследовательский центр «Курчатовский институт»
Россия

Александр Александрович Калинников - начальник лаборатории.

д. 1, пл. Академика Курчатова, Москва, 123182

Тел.: +7 (499) 196-73-22



С. А. Григорьев
Национальный исследовательский университет «МЭИ»
Россия

Сергей Александрович Григорьев - доктор технических наук, профессор.

 д. 14, ул. Красноказарменная, Москва, 111250

Тел.: +7 (495) 362-72-06



Д. Г. Бессарабов
Центр водородной инфраструктуры, Северо-западный университет
Южно-Африканская Республика

Дмитрий Георгиевич Бессарабов - кандидат химических наук, директор национального центра «Водород ЮАР».

Потчефструм, 2520



Список литературы

1. Dincer, I. Smart energy solutions with hydrogen options / I. Dincer, C. Acar // International Journal of Hydrogen Energy. – 2018. – Vol. 43. – Iss. 18. – P.8579–8599.

2. Bessarabov D., Wang H., Li H., Zhao N. (Eds): PEM Electrolysis for Hydrogen Production: Principles and Applications. CRC Press., 2015. ISBN-10:1482252295.

3. Doucet, G. Hydrogen-based PEM auxiliary power unit / G. Doucet [et al.] // International Journal of Hydrogen Energy. 2009. – Vol. 34. – Iss. 11. – P. 4983–4989.

4. Grigor’ev, S.A. Electrolysis of Water in a System with a Solid Polymer Electrolyte at Elevated Pressure / S.A. Grigor’ev [et al.] // Russian J. of Electrochemistry.– 2001. – Vol. 37. – No 8. P. 819–822.

5. Grigoriev, S.A. Failure of PEM water electrolysis cells: Case study involving anode dissolution and membrane thinning / Grigor’ev [et al.] // International Journal of Hydrogen Energy. – 2014. – Vol. 39. – Iss. 35. – P.20440–20446.

6. Eikerling, M.H. Poroelectroelastic theory of water sorption and swelling in polymer electrolyte membranes/ M.H. Eikerling, P. Berg. // Soft Matter. – 2011. – Vol. 7. – P. 5976–5990.

7. Olivier, P. Low-temperature electrolysis system modelling: A review / P. Olivier, C. Bourasseau, Pr. Belkacem Bouamama // Renewable and Sustainable Energy Reviews. 2017. – Vol. 78. – P. 280–300.

8. Lafmejani, S.S. VOF modelling of gase-liquid flow in PEM water electrolysis cell micro-channels / S.S. Lafmejani, A.Ch. Olesen, S.K. Kær // International journal of hydrogen energy. – 2017. – Vol 42. – P. 16333–16344.

9. Ojong, E.T. Development of an experimentally validated semi-empirical fully-coupled performance model of a PEM electrolysis cell with a 3-D structured porous transport layer / E.T. Ojong [et al.] // International journal of hydrogen energy. – 2017. – Vol. 42. – P. 25831–25847.

10. Aubras, F. Two-dimensional model of low-pressure PEM electrolyser: Two-phase flow regime, electrochemical modelling and experimental validation / F. Aubras [et al.] // International journal of hydrogen energy. – 2017. – Vol. 42. – P. 26203–26216.

11. Nouri-Khorasani, A. Model of oxygen bubbles and performance impact in the porous transport layer of PEM water electrolysis cells / A. Nouri-Khorasani [et al.] // International journal of hydrogen energy. – 2017. – Vol. 42. –P. 28665–28680.

12. Grigoriev, S.A. Mathematical modeling of highpressure PEM water electrolysis / S.A. Grigoriev [et al.] // Journal of Applied Electrochemistry. – 2010. – Vol. 40. – Iss. 5. – P. 921–932.

13. Tijani, A.S. Simulation Analysis of the Effect of Temperature and Exchange Current Density on Power and Hydrogen Production of (PEM) Electrolyzer / A.S. Tijani, M.A. Haiyoon // Applied Mechanics and Materials. – 2014. – Vol. 660. – P. 411–415.

14. Nie, J. A Photoelectrochemical Model of Proton Exchange Water Electrolysis for Hydrogen Production / J. Nie [et al.] // Journal of Heat Transfer. – 2008. – Vol. 130. – P. 042409–1.

15. Laoun, B. Electrochemical Aided Model to Study Solid Polymer Electrolyte Water Electrolysis / B. Laoun [et al.] // Revue des Energies Renouvelables. – 2008. – Vol. 11. – No. 2. – P. 267–276.

16. Choia, P. A simple model for solid polymer electrolyte (SPE) water electrolysis / P. Choia, D.G. Bessarabov, R. Datta // Solid State Ionics. – 2004. – Vol. 175. – P. 535–539.

17. Marangio, F. Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production / F. Marangio, M. Santarelli, M. Cali // International journal of hydrogen energy. – 2009. – Vol. 34. – P. 1143–1158.

18. Ni, M. Electrochemistry Modeling of Proton Exchange Membrane (PEM) Water Electrolysis for Hydrogen Production / M. Ni, M.K.H. Leung, D.Y.C. Leung // WHEC 16 / 13–16 June 2006 – Lyon France.

19. Tijani, A.S. Simulation Analysis of the Effect of Temperature and Exchange Current Density on Power and Hydrogen Production of (PEM) Electrolyzer / A.S. Tijani, M.A. Haiyoon // Applied Mechanics and Materials. – 2014. – Vol. 660. – P. 411–415.

20. Laoun, B. Theoretical Investigation on Solid Polymer Electrolyte Water Electrolysis / B. Laoun, B. Mahmah, L. Serir // WIH2 2007 19–21 March 2007– Ghardaïa, Algérie.

21. Zhang, H. Efficiency Calculation and Configuration Design of a PEM Electrolyzer System for Hydrogen Production / H. Zhang [et al.] // Int. J. Electrochem. Sci. 2012. – Vol. 7. – P. 4143–4157.

22. Tijani, A.S. Numerical Modeling the Effect of Operating Variables on Faraday Efficiency in PEM Electrolyzer: 3rd International Conference on System-integrated Intelligence: New Challenges for Product and Production Engineering, SysInt 2016 / A.S. Tijani, A.H. Abdol Rahim // Procedia Technology. – 2016. – Vol. 26. – P. 419–427.

23. Nieminen, J. Comparative performance analysis of PEM and solid oxide steam electrolysers / J. Nieminen, I. Dincer, G. Naterer // Int. J. Hydrogen Energy. – 2010. – Vol. 35. – P. 10842.

24. Ay, M. Exergetic performance analysis of PEM fuel cell / M. Ay, A. Midilli, I. Dincer // Int. J. Energy Res. – 2006. – Vol. 30. – Iss. 5. – P. 307–21.

25. Lewinski, K.A. NSTF Advances for PEM Electrolysis - the Effect of Alloying on Activity of NSTF Electrolyzer Catalysts and Performance of NSTF Based PEM Electrolyzers / K.A. Lewinski, D. van der Vliet, S.M. Luopa // ECS Trans. – 2015. – Vol. 69(17). – P. 893–917.

26. Millet, P. Cell failure mechanisms in PEM water electrolyzers / P. Millet [et al.] // International Journal of Hydrogen Energy. – 2012. – Vol. 37. – Iss. 22. – P. 17478–17487.

27. Bessarabov, D. (Invited) Membranes with Recombination Catalyst for Hydrogen Crossover Reduction: Water Electrolysis / D. Bessarabov // ECS Trans. – 2018. – Vol. 85. – Iss. 11. – P. 17–25.

28. Bessarabov, D. Gas Crossover Mitigation in PEM Water Electrolysis: Hydrogen Cross-over Benchmark Study of 3M's Ir-NSTF Based Electrolysis Catalyst-Coated Membranes / D. Bessarabov [et al.] // ECS Trans. – 2016. – Vol. 75(14). – P. 1165–1173; doi:10.1149/07514.1165ecst

29. Bessarabov, D. Gas Permeability of Proton Exchange Membranes / D. Bessarabov. – Chapter 21. in: PEM Fuel Cell Diagnostic Tools , Editor(s): Haijiang Wang, National Research Council Canada, Vancouver, Canada; Xiao-Zi Yuan, National Research Council Canada, Vancouver, Canada; Hui Li, National Research Council Canada, Vancouver, Canada, CRC Press, 2011, P. 443–473; ISBN: 9781439839195.

30. Kundu, S. Fingerprint of automotive fuel cell cathode catalyst degradation: Pt band in PEMs / S. Kundu [et al.] // Membrane Technology. – 2009. – Vol. 10. – P. 7–10.

31. Oberlin, R. Gas permeation through an SPE membrane during electrolysis / R. Oberlin, S. Stucki, H.J. Christen // 33rd ISE-Meeting, Lyon, France. – P.434–436.

32. Schalenbach, M. Pressurized PEM water electrolysis: Efficiency and gas crossover / M. Schalenbach [et al.] // International Journal of Hydrogen Energy. – 2013. – Vol. 38. – P. 14921–14933.

33. Ito, H. Properties of Nafion® membranes under PEM water electrolysis conditions / H. Ito [et al.] // International journal of hydrogen energy. – 2011. – Vol. 36. – P. 10527–10540.

34. Grigoriev, S.A. High-pressure PEM water electrolysis and corresponding safety issues / S.A. Grigoriev [et al.] // International Journal of Hydrogen Energy. – 2011. – Vol. 36. – Iss. 3.– P. 2721–2728.

35. Ito, H. Cross-permeation and consumption of hydrogen during proton exchange membrane electrolysis / H. Ito [et al.] // International journal of hydrogen energy. – 2016. – Vol. 41. – P. 20439–20446.

36. Durst, J. Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media / J. Durst [et al.] // Journal of the Electrochemical Society. – 2015. – Vol. 162(1). – P. F190–F203.

37. Schalenbach, M. Gas Permeation through Nafion®. Part 1: Measurements / M. Schalenbach [et al.] // J. Phys. Chem. C. – 2015. – Vol. 119. – 25145−25155.

38. Choi, P. Sorption in Proton-Exchange Membranes. An Explanation of Schroeder’s Paradox / P. Choi, R. Datta // Journal of the Electrochemical Society. − 2003. – Vol. 150. – Iss. 12. – P. E601−E607

39. Choi, P. Consideration of Thermodynamic, Transport, and Mechanical Properties in the Design of Polymer Electrolyte Membranes for Higher Temperature Fuel Cell Operation / P. Choi [et al.] // Journal of Polymer Science: Part B: Polymer Physics. – 2006. – Vol. 44. – Iss. 16. – P. 2183–2200.

40. Futerko, P. Thermodynamics of Water Vapor Uptake in Perfluorosulfonic Acid Membranes / P. Futerko, I-M. Hsing // Journal of the Electrochemical Society. 1999. – Vol. 146. – Iss. 6. – P. 2049–2053.

41. Choi, P. Thermodynamics and Proton Transport in Nafion®. I. Membrane Swelling, Sorption, and Ion-Exchange Equilibrium / P. Choi, N.H. Jalani, R. Datta // Journal of the Electrochemical Society. – 2005. – Vol. 152 – Iss. 3. – P. E84–E89.

42. Onishi, L.M. Water-Nafion® Equilibria. Absence of Schroeder’s Paradox / L.M. Onishi, J.M. Prausnitz, J. Newman // J. Phys. Chem. B. – 2007. – Vol. 111. – P. 10166–10173

43. Freger, V. Hydration of Ionomers and Schroeder’s Paradox in Nafion®” / V. Freger // J. Phys. Chem. B. – 2009. – Vol. 113. – P. 24–36.

44. Hinatsu, J.T. Water Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water Vapor / J.T. Hinatsu, M. Mizuhata, H. Takenaka // J. Electrochem. Soc. – 1994. – Vol. 141. – No. 6. – P. 1493–1498

45. Flory, P.J. Principles of Polymer Chemistry / P.J. Flory. – Cornell University Press, Ithaca, 1953.

46. Jalani, N.H. TEOM: A novel technique for investigating sorption in proton-exchange membranes / N.H. Jalani, P. Choi, R. Datta // Journal of Membrane Science. – 2005. – Vol. 254. – P. 31–38.

47. Divisek, J. Study of Capillary Porous Structure and Sorption Properties of Nafion® Proton Exchange Membranes Swollen in Water / J. Divisek [et al.] // J. Electrochem. Soc. –1998. – Vol. 145. – Iss. 8. – P. 2677–2683.

48. Tang, Ya. An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane / Ya. Tang [et al.] // Materials Science and Engineering A. – 2006. – Vol. 425. – P. 297–304.

49. Weber, A.Z. A Theoretical Study of Membrane Constraint in Polymer-Electrolyte Fuel Cells / A.Z. Weber, J. Newman // American Institute of Chemical Engineers AIChE Journal. – 2004. – Vol. 50. – No. 12. – P. 3215–3226.

50. Schroeder, P.V. Über Erstarrungs-und Quel-lungserscheinungen von Gelatine / P.V. Schroeder // Z. Phys. Chem. – 1903. – Vol. 45. – P. 75.

51. Freger V. Elastic energy in microscopically phase-separated swollen polymer networks / V. Freger // Polymer. – 2002. – Vol. 43. – Iss. 1. – P. 71–76.

52. Elfring, G.J. Thermodynamics of pore wetting and swelling in Nafion® / G.J. Elfring, H. Struchtrup // J. Membr. Sci. – 2008. – Vol. 315. – P. 125.

53. Jalani, N.H. Optomechanical characterization of proton-exchange membrane fuel cells / N.H. Jalani [et al.] // Proc. SPIE. – 2004. – Vol. 5532. – P. 316–325.

54. Satterfield, M.B. Viscoelastic properties of Nafion® at elevated temperature and humidity / M.B. Satterfield, J.B. Benziger // Journal of Polymer Science: Part B: Polymer Physics. – 2008. – Vol. 47. – P. 11–24.

55. Paddison, S. High-frequency dielectric studies of hydrated Nafion® / S. Paddison, D.W. Reagor, T.A. Zawodzinski // J. Electroanal. Chem. – 1998. – Vol. 459. – P. 91–97.

56. Roldughina, V.I. On the Schroeder Paradox for Ion-Exchange Polymers / V.I. Roldughina, L.V. Karpenko-Jereb // Colloid Journal. – 2016. – Vol. 78. – No. 6. – P. 795–799.

57. Berg, P. Exact solution of an electro-osmotic flow problem in a cylindrical channel of polymer electrolyte membranes / P. Berg, K.Ladipo // Proc. R. Soc. A. – 2009. – Vol. 465. – P. 2663–2679.

58. Zawodzinski, T.A. The contact angle between water and the surface of perfluorosulphonic acid membranes / T.A. Zawodzinski [et al.] // J. Appl. Electrochem. – 1993. – Vol. 23. – P. 86–88.

59. Gibbs, J.W. On the Equilibrium of Heterogeneous Substances / J.W. Gibbs. – in Bumstead, H.A.; Van Nameeds, R.G., The Scientific Papers of J. Willard Gibbs, 1, Woodbridge, CT: Ox Bow Press, 2002. – P. 55–354.

60. Nazarov, I. The Impact of Membrane Constraint on PEM Fuel Cell Water Management / I. Nazarov, K. Promislow // Journal of the Electrochemical Society. – 2007. – Vol. 154. – Iss. 7. – P. B623–B630.

61. Baranov, I.E. Transfer processes in PEM fuel cell: Influence of electrode structure / I.E. Baranov [et al.] // International Journal of Hydrogen Energy. – 2006. – Vol. 31. – Iss. 2. – P. 203–210.

62. Frensch, S.H. Model-supported characterization of a PEM water electrolysis cell for the effect of compression / S.H. Frensch // Electrochimica Acta. – 2018. – Vol. 263. – P. 228–236.

63. Калинников, А.А. Модель транспорта в полимерном электролите на основе неравновесной пороэлектроэластичной теории / А.А. Калинников, С.А. Григорьев, Д.Г. Бессарабов // Международный научный журнал «Альтернативная энергетика и экология» (ISJAEE). – 2018 (в редакции).


Для цитирования:


Калинников А.А., Григорьев С.А., Бессарабов Д.Г. НЕРАВНОВЕСНАЯ ПОРОЭЛЕКТРОЭЛАСТИЧНАЯ ТЕОРИЯ ПОЛИМЕРНОГО ЭЛЕКТРОЛИТА В УСЛОВИЯХ ЭЛЕКТРОЛИЗА ВОДЫ. Альтернативная энергетика и экология (ISJAEE). 2018;(13-15):87-112. https://doi.org/10.15518/isjaee.2018.13-15.087-112

For citation:


Kalinnikov A.A., Grigoriev S.A., Bessarabov D.G. NON-EQUILIBRIUM POROELECTROELASTIC THEORY OF POLYMER ELECTROLYTE WITHIN THE CONDITIONS OF WATER ELECTROLYSIS. Alternative Energy and Ecology (ISJAEE). 2018;(13-15):87-112. (In Russ.) https://doi.org/10.15518/isjaee.2018.13-15.087-112

Просмотров: 142


ISSN 1608-8298 (Print)