Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

THE MORPHOLOGY FEATURES OF NANOSTRUCTURE OF ZIRCONIUM, MOLYBDENUM AND WOLFRAM OXIDES SYNTHESISED BY LASER ABLATION OF METALS IN WATER

https://doi.org/10.15518/isjaee.2018.13-15.141-148

Abstract

The paper gives the investigation results of composition and morphology of oxide nanostructures of transition metals – zirconium, molybdenum and wolfram synthesized by laser ablation pure metals in water.

High temperatures and pressures in zone of interaction of the pulse laser beam with the surface of metal in water contribute to the intensive synthesis of oxides in the form of clusters of particles with size about 1−2 nanometres. This is characteristic for metals with high ionization potential. As it follows from the data of X-ray diffraction analysis and scanning electron microscopy, specifically, the clusters are amorphous building material for nanostructures of the oxides of the metals enumerated above. The paper demonstrates the general pattern of their structure, namely, the stratification of the material from which the foam formations, thin-walled hollow round particles, plates, filaments, and other forms of nanostructures are composed. The research of morphological features of the nanostructures of zirconium, molybdenum and wolfram oxides obtained by the authors indicates that their use as substrates will achieve high gain values of Raman scattering ~ 104−108. In this range, there are the gain data previously obtained by the authors in the experiments on the synthesis of zirconium nano-oxides when using them as a substrate.

This indicates that the nanostructures of molybdenum and wolfram nano-oxides also can serve as the effective substrates and can be used as a sensor in the high sensitive composition of substances analyzers based on surface enhanced Raman scattering.

About the Authors

V. T. Karpukhin
Joint Institute for High Temperatures, Russian Academy of Sciences
Russian Federation

Vyacheslav Karpukhin - D.Sc. in Engineering, Chief Researcher JIHT RAS.

13/2 Izhorskaya St., Moscow, 127412

Tel.: +7 (495) 485 83 45



M. M. Malikov
Joint Institute for High Temperatures, Russian Academy of Sciences
Russian Federation

Mikhail Malikov - D.Sc. in Physics and Mathematics, Leading  Researcher JIHT RAS.

13/2 Izhorskaya St., Moscow, 127412

Tel.: +7 (495) 485 83 45



G. E. Valyano
Joint Institute for High Temperatures, Russian Academy of Sciences
Russian Federation

George Valyano - Senior Researcher JIHT RAS.

13/2 Izhorskaya St., Moscow, 127412

Tel.: +7 (495) 485 83 45



T. I. Borodina
Joint Institute for High Temperatures, Russian Academy of Sciences
Russian Federation

Tatiana Borodina - Ph.D. in Physics and Mathematics, Senior Researcher JIHT RAS.

13/2 Izhorskaya St., Moscow, 127412

Tel.: +7 (495) 485 83 45



M. A. Kazaryan
Lebedev Physical Institute, Russian Academy of Sciences
Russian Federation

Mishik Kazaryan - D.Sc. in Physics and Mathematics, Leading Researcher LPI RAS.

53 Leninskii Av., Moscow, 119991

Tel.: +7 (499) 135 42 64


References

1. Koeber R., Bayona J.M., Niessner R. Determination of benzo[a]pyrene diones in air particulate matter with liquid chromatography mass spectrometry. Environ. Sci. Technol., 1999;33(10):1522–1558.

2. Hilmi A, Luong JHT. Micromachined electrophoresis chips with electrochemical detectors for analysis of explosive compounds in soil and groundwater. Environ. Sci. Technol., 2000;34(14):3046–3050.

3. Da-Wei Li, Wen-Lei Zhai , Yuan-Ting Li , Yi-Tao Long. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta, 2013, DOI 10.1007/s00604-013-1115-3.

4. Zuev V.S. Surface polaritons and plasmons: spontaneous emission of an atom near a small body (Poverkhnostnye polyaritony i plazmony: spontannoe izluchenie atoma vblizi tela malogo razmera), FIAN, 2006, 16 p. (preprint no. 3) (in Russ.).

5. Emel'yanov V.I., Koroteev N.I. The effect of giant Raman scattering of light by molecules (Effekt gigantskogo kombinatsionnogo rasseyaniya sveta molekulami). UFN, 1981;135:345−361 (in Russ.).

6. Lombardi J.R., Birke R.L. Theory of Surface-Enhanced RAMAN Scattering in Semiconductors. J. Phys. Chem. C, 2014;118(20):11120‒11130.

7. Mamichev I.E., Kuznetsov N.E., Maslova M.L., Zanaveskin S.S. Optical sensors based on surface plasmon resonance for highly sensitive biochemical analysis, (Opticheskie sensory na osnove poverkhnostnogo plazmonnogo rezonansa dlya vysokochuvstvitel'nogo biokhimicheskogo analiza). Molekulyarnaya meditsina, 2012;6:56‒61 (in Russ.).

8. Nobiev I.R., Efremov R.G., Chumanov G.D. Giant Raman scattering and its application to the study of biological molecules (Gigantskoe kombinatsionnoe rasseyanie i ego primenenie k izucheniyu biologicheskikh molekul). UFN, 1988;154:459−496 (in Russ.).

9. Wei Ji, Bing Zhao, Yukihiro Ozaki. Semiconductor materials in analitical applications of surface-enhanced Raman scattering. J. Raman Spectroscopy, 2016;47:51−58.

10. Aroca R. Surface enhanced Vibrational Spectroscopy. Wiley, Chichester, 2006

11. Yamamoto Yuko S., Tamitake Itoh. Why and how do the shapes of surface enhanced Raman scattering spectra change? Recent progress from mechanistic studies. J. Raman Spectroscopy., 2016;47:78‒88.

12. Yu-LienDeng, Yi-JeJuang. Black silicon SERS substrate: Effect of surface morphology on SERS detection and application of single algal cell analysis. Biosensors and Bioelectronics, 2014;53:37‒42.

13. Rigo I., Veres V., Himics L., Toth S., Czitrovszky A., Nagy A., Furjes P. Comparative analysis of SERS substrates of different morphology. Procedia Engineering, 2016; 30th Eurosensors Conference, EUROSENSORS 2016.

14. Li W.Q., Wang G., Zhang X.N., Geng H.P., Shen J.L., Wang L.S., Zhao J., Xu L.F., Zhang L.J., Wu Y.Q., Tai R.Z., Chen G. Geometrical and morphological optimizations of plasmonic nanoarrats for high-performance SERS detection. Nanoscale, 2015;7:15487.

15. Yang G.W. Laser ablation in liquids: Application in synthesis of nanocrystalls. Progress in Material Science, 2007;52(4);648‒698.

16. Simakin A.V., Voronov V.V., Shafeev G.A. Nanoparticle Formation During Laser Ablation of Solids in Liquids. Phys. of Wave Phenomena, 2007;15:218.

17. Batenin V.M., Bokhan P.A., Buchanov V.V., Evtushenko G.S., Kazaryan M.A., Karpukhin V.T., Klimovskii I.I., Malikov M.M. The self-terminating lasers the transitions of atoms of metals (Lazery na samoogranichennykh perekhodakh atomov metallov), Vol. 2. Moscow: Fizmatlit Publ., 2011 (in Russ.).

18. Novogenov V.A. Introduction into inorganic chemistry. Barnaul: Altai State University Publ., 2001.

19. Burtseva K.G., Voropanova L.A., Kochubei L.A. About isopoliteia of molybdenum and wolfram (Ob izopolisoedineniyakh molibdena i vol'frama). ZhNKh, 1984;29(6):1463‒1467 (in Russ.).

20. Karpukhin V.T., Malikov M.M., Borodina T.I., Valyano G.E., Gololobova O.A. and Strikanov D.A. Structural Morphological and Optical Properties of Nanoproducts of Zirconium Target Laser Ablation in Water and Aqueous SDS Solutions. Chemical and Structure Modification of Polymers. Edited by Pyrzynski K., Nyszko G., and Zaikov G.E. Apple Academic Press, 2015; pp.187‒204.

21. Karpukhin V.T., Malikov M.M., Borodina T.I., Val'yano G.E., Gololobova O.A. An investigation of the effect of surface-enhanced Raman scattering on zirconium and molybdenum nanostructures synthesized by laser ablation in a liquid environment in book “Laser Ablation: Advances in Research and Applications”, 2017; ch. 6, pp. 179‒192, Nova Science Publishers, Hauppauge, New York 2017, 199 p. ISBN: 978-1-53612-405-7.

22. Varaksin A.Yu., Romash M.E., Kopeitsev V.N. Controlling the Behavior of Air Tornados. High Temperature, 2009;47(6):836–842.

23. Varaksin A.Yu., Romash M.E., Kopeitsev V.N., Gorbachev M.A. Simulation of Free Heat Vortexes: Generation, Stability, Control. High Temperature, 2010;48(6):918–925.


Review

For citations:


Karpukhin V.T., Malikov M.M., Valyano G.E., Borodina T.I., Kazaryan M.A. THE MORPHOLOGY FEATURES OF NANOSTRUCTURE OF ZIRCONIUM, MOLYBDENUM AND WOLFRAM OXIDES SYNTHESISED BY LASER ABLATION OF METALS IN WATER. Alternative Energy and Ecology (ISJAEE). 2018;(13-15):141-148. (In Russ.) https://doi.org/10.15518/isjaee.2018.13-15.141-148

Views: 692


ISSN 1608-8298 (Print)