Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The induction pumping of Coaxial Lasers on Self-Terminating Transitions

https://doi.org/10.15518/isjaee.2018.16-18.098-112

Abstract

The paper presents the results of the numerical simulations of pumping a copper vapour laser by a repetitively pulsed induction (electrodeless) discharge. We have investigated the version of the laser with an annular discharge volume formed by two coaxial cylinders. Such coaxial chamber is shown to be more appropriate for the induction pumping than the conventional cylindrical chamber. In the first case, higher coupling factors in the transformercoupled circuit of the induction discharge as well as rather high curl electric field are achieved. Moreover, from the ecological point of view, the coaxial chamber appears to be safer for the surrounding personnel in terms of their exposure to electromagnetic radiation. The present work briefly presents the physical model of the laser which describes the dynamics of the plasma parameters, the kinetics of the inverse population of the working levels for the laser on self terminating transitions as well as the development of the induction radiation. The paper also presents the electrical equations describing the simplest source of electrical pump pulses. The thermal characteristics of the working medium are estimated and the design calculations of the chamber are performed. The numerical experiments have found that, in contrast to the case of a conventional copper vapour laser with aperiodic discharge, in the regarded versions of the copper vapour laser the pump pulse is realized as a train of high-frequency damped oscillations. The analysis of the physical processes occurring in the plasma of the high-frequency discharge is carried out. The pulsed behaviour of the Joule heat power is shown to release results in pronounced pulsations of the electron temperature. This fact, however, does not significantly affect the operation of the laser on self-terminating transitions. In the optimal pumping regimes, subtle oscillations are merely observed for the inverse population of the copper atom working levels and for the intensity in the radiation pulse. High output laser characteristics achieved in the numerical simulations demonstrate the potential for efficient pumping of the copper vapour laser using the inductive method which is new for such lasers. 

About the Authors

V. M. Batenin
Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS)
Russian Federation

Vyacheslav Batenin - D.Sc. in Engineering, Professor, Corresponding Member of RAS, Advisor of RAS; JIHT RAS.

13/2 Izhorskaya St., Moscow, 125412, tel.: +7(916) 735-61-66



V. T. Karpukhin
Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS)
Russian Federation

D Vyacheslav Karpukhin - Sc. in Engineering, Chief Researcher JIHT RAS.

13/2 Izhorskaya St., Moscow, 125412, tel.: +7(916) 735-61-66



M. M. Malikov
Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS)
Russian Federation

Mikhail Malikov - D.Sc. in Physics and Mathematics, Leading Researcher, Joint Institute of High Temperatures of the Russian Academy of Sciences (JIHT RAS).

13/2 Izhorskaya St., Moscow, 125412, tel.: +7(916) 735-61-66



A. S. Averyushkin
P.N. Lebedev Physical Institute of the Russian Academy of Sciences (LPI RAS)
Russian Federation

Anatoly Averyushkin - D.Sc. in Physics and Mathematics, Leading Engineer, P.N. Lebedev Physical Institute of the Russian Academy of Sciences (LPI RAS).

53 Leninskiy Av., Moscow, 119991, tel.: +7(499)132 61 47



M. A. Kazaryan
P.N. Lebedev Physical Institute of the Russian Academy of Sciences (LPI RAS)
Russian Federation

Mishik Kazaryan - D.Sc. in Physics and Mathematics, Leading Researcher, Physical Institute named after P. N. Lebedev RAS.

53 Leninskiy Av., Moscow, 119991, tel.: +7(499)132 61 47



N. A. Lyabin
Research and Production Corporation “Istok”
Russian Federation

Nikolay Lyabin - D.Sc. in Engineering, Head of Laboratory, JointStock Company Research & Production Corporation “ISTOK” named after A.I. Shokin.

2A Vokzalnaya St., Fryazino, Moscow Region, 141190, tel.: +7 (495) 465 86 90



R. A. Zakharyan
Tarusa Department of Prokhorov General Physics Institute of the Russian Academy of Sciences (GPI RAS)
Russian Federation

Robert Zakharyan - Acting Director Tarusskii branch of A.M. Prokhorov General Physics Institute of RAS.

6 Engels St., Tarusa, Kaluga Region, 249100



References

1. Batenin V.M., Buchanov V.V., Boichenko A.M., Kazaryan M.I., Klimovskii I.I., Molodykh E.I. High Brightness Metal Vapor Lasers: Physical Fundamentals and Mathematical Models. November 15, 2016, forthcoming by CRC Press, 600 P. ISBN 9781482250046.

2. Mkhitaryan V.M. Lasers and radiation sources based on induction discharge in the medium (Lazery i istochniki izlucheniya na osnove induktsionnogo razryada v srede). Lazer – Inform, 2004;(15–16):18−19 (in Russ.).

3. Razhev A.M., Mkhitaryan V.M., Churkin D.S. 703- to 731-nm FI Laser Excited by a Transverse Inductive Discharge. JETP Letters, 2005;82(5):259–262.

4. Razhev A.M., Churkin D.S. Inductive Ultraviolet Nitrogen Laser. JETP Letters, 2007;86(6):420–423.

5. Razhev A.M., Mekhitarian V.M., Zhupikov A.A., Churkin D.S. Laser action on the F, He, Ne, Ar atoms and XeC1 and XeF molecules excited by an inductive transverse discharge. Proc. SPIE, 2006;6263; doi: 10.1117/12.677386.

6. Razhev A.M., Churkin S.S., Zhupikov A.A. Study of the UV emission of an inductive nitrogen laser. Quantum Electronics, 2009;39(10):901−905.

7. Razhev A.M., Churkin D.S., Kargapol’tsev E.S. Pulsed IR inductive lasers. Laser Phys, 2014;24:074004.

8. Manucharyan RG., Mkhitaryan V.M., Isaev A.A., Kazaryan M.A., Lyabin N.A., Azizbekyan G.A., Pogosyan L.A. Copper atoms excitation by pulseperiodic induction discharge in CuBr vapors (Vozbuzhdenie atomov medi impul'sno - periodicheskim induktsionnym razryadom v parakh CuBr). Sbornik tezisov simp. “Lazery na parakh metallov LPM – 2006”, Rostov-na-Donu, 2006, p. 14 (in Russ.).

9. Malikov M.M., Karpukhin V.T., Kazaryan M.A. Numerical simulation of excitation of high-power copper vapor lasers by pulse-periodic induction discharge (Chislennoe modelirovanie vozbuzhdeniya moshchnykh lazerov na parakh medi impul'sno–periodicheskim induktsionnym razryadom). V sbornike trudov simp. “Lazery na parakh metallov” (LPM − 2014), Rostov-naDonu, 2014, pp. 64−65 (in Russ.).

10. Malikov M.M., Kazaryan M.A., Karpukhin V.T. On the Possibility of Efficient Pumping of Copper Vapor Lasers by a Pulse-Periodic Inductive Discharge. Bulletin of the Lebedev Physics Institute, 2015;42(5):138–143.

11. Kalantarov P.L., Tseitlin L.A. Calculation of inductance (Raschet induktivnostei). Leningrad: Energiya Publ., 1970 (in Russ.).

12. Popov V.P. Fundamentals of the theory of circuits (Osnovy teorii tsepei). Moscow: Vyssh. Shkola Publ., 2007 (in Russ.).

13. Direktor L.B., Malikov M.M. Physical model and method of calculation of parameters of copper vapor laser. (Fizicheskaya model' i metodika rascheta parametrov lazera na parakh medi). Preprint №5-249 IVTAN. Moscow, 1988, 52 p. (in Russ.).

14. Malikov M.M. Experimental and theoretical investigation of physical processes in laser systems, copper-vapor, to improve the specific output characteristics (Eksperimental'noe i raschetno-teoreticheskoe issledovanie fizicheskikh protsessov v lazernykh sistemakh na parakh medi s tsel'yu uluchsheniya udel'nykh vykhodnykh kharakteristik). Dissertation for the degree of doctor of physical and mathematical sciences. Moscow, 2011 (in Russ.).

15. Direktor L.B., Karpukhin V.T., Malikov M.M. Thermophysical Model of Metal_Vapor Lasers with Discharge Chambers of Cylindrical and Coaxial Geometry. High Temperature, 2014;52(3):428−435.

16. Raizer Yu.P. High-frequency induction discharge of high pressure and non-electrode plasmatron (Vysokochastotnyi induktsionnyi razryad vysokogo davleniya i bezelektrodnyi plazmotron). Uspekhi fizicheskikh nauk, 1969;99(4):687−712 (in Russ.).

17. Induction heating installations. / Edited by A. E. Slugocki (Ustanovki induktsionnogo nagreva / Ed. A.E. Slukhotskogo.). Leningrad: Energoizdat Publ., 1981 (in Russ.).

18. Dresvin S.V. Fundamentals of the theory and calculation of high-frequency plasmatrons (Osnovy teorii i rascheta vysokochastotnykh plazmotronov). Leningrad: Energoatomizdat Publ., 1991 (in Russ.).

19. Grigor'yants A.G., Kazaryan M.A., Lyabin N.A. Copper vapor lasers: design, characteristics and applications (Lazery na parakh medi: konstruktsiya, kharakteristiki i primeneniya). Moscow: Fizmatlit Publ., 2005, 312 p. (in Russ.).

20. Borovich B.L. Transverse-discharge coppervapor laser. In Metal Vapor Lasers and Their Applications. CIS Selected Papers. G. Petrash Editor. Proc. SPIE, 1993;22110:46−63.

21. Batenin V.M., Bokhan P.A., Buchanov V.V., Evtushenko G.S., Kazaryan M.A., Karpukhin V.T., Klimovskii I.I., Malikov M.M. Self-terminating Lasers the transitions of atoms of metals − 2 (Lazery na samoogranichennykh perekhodakh atomov metallov – 2). Moscow: Fizmatlit Publ., 2011; vol. 2 (in Russ).

22. Batenin V.M., Klimovskii I.I., Morozov A.V, Selezneva L.A. Spectral and temporal characteristics of induced copper vapor laser radiation (Spektral'novremennye kharakteristiki indutsirovannogo izlucheniya lazera na parakh medi). Tomsk: Trudy V Vses. Simpoziuma po rasprostraneniyu lazernogo izlucheniya v atmosphere, 1979, pp. 121−125 (in Russ.).

23. Vasil'ev L.A., Gerts V.E., Direktor L.B., Kachalov V.V., Malikov M.M., Mendeleev V.Ya., Ratnikov G.E., Ryazanskii V.M., Sokol G.F., Sokolov A.V., Tatarintsev L.V., Fomin V.A., Shpil'rain E.E. Copper vapor laser with a magnetic field (Lazer na parakh medi s magnitnym polem). Teplofizika vysokikh temperature, 1982;20(5):995−997 (in Russ.).

24. Varaksin A.Yu., Protasov M.V., Teplitskii Yu.S. About choice of particle parameters for visualization and diagnostics of free concentrated air vortices. High Temperature, 2014;52(4);554−559.

25. Varaksin A.Yu. Clusterization of particles in turbulent and vortex two-phase flows. High Temperature, 2014;52(5):752–769.


Review

For citations:


Batenin V.M., Karpukhin V.T., Malikov M.M., Averyushkin A.S., Kazaryan M.A., Lyabin N.A., Zakharyan R.A. The induction pumping of Coaxial Lasers on Self-Terminating Transitions. Alternative Energy and Ecology (ISJAEE). 2018;(16-18):98-112. (In Russ.) https://doi.org/10.15518/isjaee.2018.16-18.098-112

Views: 722


ISSN 1608-8298 (Print)