APPLICATION OF THE MAGNETRON SPUTTERING FOR NANOSTRUCTURED ELECTROCATALYSTS SYNTHESIS (REVIEW)
https://doi.org/10.15518/isjaee.2015.07.001
Abstract
Electrochemical systems with solid polymer electrolyte are considered to be the most promising for hydrogen energy and several branches of industry. Electrocatalysts are one of the key components of fuel cells and electrolyzers. Application of magnetron sputtering for their synthesis will allow replacing the multistage chemical methods, to decrease platinum loading and create new effective nanostructured electrocatalysts. This review presents the systematization of the available data on magnetron sputtering for electrocatalysts and protective coating synthesis. Moreover the review analyzes the influence of sputtering parameters on deposited films properties and proposes several strategies of optimization. There is special attention to nanocarbon support materials (graphene, carbon nanotubes).
About the Authors
O. K. AlexeevaRussian Federation
PhD, Head of Department of Physicochemistry and Technology of New Materials of NRC “Kurchatov Institute”; winner of Lenin Komsomol Prize in physics
V. N. Fateev
Russian Federation
chemist, PhD, DSc (Chemistry), Professor, Deputy Head of KCPCT on scientific work of NRC “Kurchatov Institute”
References
1. Kozlov S.I., Fateev V.N. Vodorodnaâ ènergetika: sovremennoe sostoânie, problemy, perspektivy. Mos-cow: Gazprom VNIIGAZ Publ., 2009 (in Russ.).
2. Weber M.F., Mamiche-Afare S., Dignam M.J. et al. Sputtered fuel cell elec-trodes. J. Electrochem. Soc., 1987, vol. 134, pp. 1416–1419 (in Eng.).
3. Ticianelli E.A., Derouin C.R., Srinivasan S. Local-ization of platinum in low catalyst loading electrodes to attain high power densities in SPE fuel cells. J. Electro-anal. Chem., 1988, vol. 251, pp. 275–295 (in Eng.).
4. Mukerjee S., Srinivasan S., Appleby J. Effect of sputter film of platinum on low platinum loading elec-trodes on electrode kinetics of oxygen reduction in pro-ton exchange membrane fuel cells. Electrochim. Acta, 1993, vol. 38, pp. 1661–1669 (in Eng.).
5. Hirano S., Kim J., Srinivasan S. High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes. Electrochim. Acta, 1997, vol. 42, pp. 1587–1593 (in Eng.).
6. Dearnaley G., Arps J.H. Catalytic coatings and fuel cell electrodes and membrane electrode assemblies made therefrom. Patent No: US 7303834 B2 H01M 4/86. USA. Filed: Jan 6, 2003 Publication Data Dec. 4, 2007 (in Eng.).
7. Kim H.-T., Lee J.-K. Platinum-sputtered electrode based on blend of carbon nanotubes and carbon black for polymer electrolyte fuel cell. J. of Power Sources, 2008, vol. 180, pp. 191–194 (in Eng.).
8. Tian Z.Q., Lim S.H., Poh C.K. et al. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells. Adv. Energy Mater., 2011, no. 1, pp. 1205–1214 (in Eng.).
9. Jukk K., Alexeyeva N., Sarapuu A., Ritslaid P., Kozlova J., Sammelselg V., Tammeveski K. Electrore-duction of oxygen on sputter-deposited Pd nanolayers on multi-walled carbon nanotubes. Int. J. Hydrogen Energy, 2013, vol. 38, pp. 3614–3620 (in Eng.).
10. Jukk K., Alexeyeva N., Ritslaid P., Kozlova J., Sammelselg V., Tamme-veski K. Electrochemical reduc-tion of oxygen on heat-treated Pd nanopar-ticle/multi-walled carbon nanotube composites in alkaline solution. Electrocatalysis, 2013, vol. 4, pp. 42–48 (in Eng.).
11. Abd Elhamid M.H., Dad-heech G.V., Mikhail Y.M. Passivated metallic bipolar plates and a method for producing the same. Patent US # 8785080 B2 H01M2008/1095. USA. Filed: Jan. 3, 2008. Publication Data July, 22, 2014 (in Eng.).
12. Dadheech G.V., Abd Elhamid M.H., Mikhail Y.M. Electrical contact element for a fuel cell having a conductive monoatomic layer coating. Patent US # 7803476 B2 H01M 8/02 USA. Filed: Dec. 5, 2006. Pub-lication Data Sep. 28, 2010 (in Eng.).
13. Grigoriev S.A., Fedotov A.A., Martemianov S.A., Fateev V.N. Synthesis of nanostructural electrocatalytic materials on various carbon substrates by ion plasma sputtering of platinum metals. Russian J. of Elec-trochemistry, 2014, vol. 50, no. 7, pp. 638–646 (in Eng.).
14. Gluhov A.S., Fedotov A.A., Grigorʹev S.A., Ku-leshov N.V. Magnetronno-ionnoe raspylenie kak metod sinteza katalizatorov dlâ èlektrohi-mičeskih sistem s tverdopolimernym èlektrolitom. International Scientific Journal “Alʹternativnaâ ènergetika i èkologiâ” (IS-JAEE), 2012, no. 04 (108), pp. 101–107 (in Russ.).
15. Fedotov A.A., Grigorʹev S.A., Gluhov A.S., Dzhusʹ K.A., Fateev V.N. Sintez nanostrukturirovannyh èlektrokatalizatorov na osnove magnetronno-ionnogo raspyleniâ. Kinetika i kataliz, 2012, vol. 53, issue 6, pp. 753–758 (in Russ.).
16. Bryazkalo A.M., Golʹdenberg R.E., Grigorʹev S.A., Pristavko Yu.N., Fateev V.N. Ustrojstvo dlâ naneseniâ pokrytij na poroški. RU 2 344 902 C1 B22F 1/02 C23C 14/34 B02C 17/20. RF. 27.01.2009/ Bûl. no. 3 (in Russ.).
17. Nechitailov A.A., Hamova T.V., Zvonareva T.K. et al. Sposob polučeniâ katalitičeskogo sloâ toplivnogo èlementa. RU 2 358 359 C1 H01M 4/88 H01M 8/10. RF. / // 10.06.2009// Bûl. # 16 (in Russ.).
18. Gurovich B.A., Kuleshova E.A., Fateev V.N. et al. Sposob polučeniâ katalitičeskogo sloâ toplivnogo èlementa. RU 2 414 021 C1 H01M 4/88. RF. 10.03.2011. Bûl. no. 7 (in Russ.).
19. Penning F.M. Coating by cathode disintegration. Patent 2 146 025 AH01J41/06, H01J41/20, H01J41/00, C23C14/35. USA. opubl.7.02.1939 (in Eng.).
20. Danilin B.S., Syrchin V.K. Magnetronnye raspylitelʹnye sistemy. Moscow: Radio i svâzʹ Publ., 1982 (in Russ.).
21. Kuzʹmichev A.I. Magnetronnye raspylitelʹnye sis-temy. Kiev: Avers Publ., 2008 (in Russ.).
22. Sarakinos K., Alami J., Konstantinidis S. High power pulsed magnetron sputtering: A review on scien-tific and engineering state of the art. Surface & Coatings Technology, 2010, vol. 204, pp. 1661–1684 (in Eng.).
23. Xie L., Brault P., Bauchire J.-M., Thomann A.-L., Bedra L. Molecular dy-namics simulations of clusters and thin film growth in the context of plasma sputtering deposition. J. Phys. D: Appl. Phys., 2014, vol. 47, 224004 (in Eng.).
24. Alexeeva O., Chistov A., Sumarokov V. Prepara-tion of hydride-forming intermetallic films. Int. J. Hy-drogen Energy, 1995, vol. 20, pp. 397–399 (in Eng.).
25. Alexeeva O.K., Zakharov A.I., Sumarokov V.N. Interaction of magnetron sputtered PrNi5 films with hy-drogen. Int. J. Hydrogen Energy, 1996, vol. 21, pp. 1001–1003 (in Eng.).
26. Alexeeva O.K., Shapir B.L., Sumarokov V.N., Vinogradova E.A. Interaction of hydrogen sulfide with Ni-Al protective coatings prepared by vacuum deposi-tion. Int. J. Hydrogen Energy, 1999, vol. 24, pp. 235–239 (in Eng.).
27. Alexeeva O.K., Amirkhanov D.M., Kotenko A.A., Chelyak M.M. Creation of hydrogen - selective tubular composite membranes based on Pd-alloys: I. Improvement of ceramic support with Ni layer deposition. In: T.N. Veziroglu et al. (eds.), Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. Springer, 2007, pp. 95–103 (in Eng.).
28. Alekseeva O.K., Gavrilkin A.A., Legasov V.A., Romanovski B.V., Rusanov V.D., Safonov M.S., Suma-rokov V.N., Chistov A.G., Chumak P.S. Harakteristiki nanesennogo lentočnogo katalizatora s aktivnym sloem nikelâ Reneâ. Kin. i kat., 1987, vol. 28, no. 5, pp. 240–243 (in Russ.).
29. Alexeeva O.K., Iltchenko N.L., Panteleimonova A.A., Novikov A.A., Sumarokov V.N. Modified hydrogen sulfide adsorbents-catalysts. Int. J. Hydrogen Energy, 1994, vol. 19, pp. 693–696 (in Eng.).
30.
31. Alekseeva O.K., Alekseev S.Yu., Amirhanov D.M., Kotenko A.A., Chelyak M.M., Shapir B.L. Vyso-kotemperaturnye katalitičeskie membrannye reaktory dlâ processov s učastiem vodoroda. Membrany. Ser. Kritičeskie tehnologii, 2003, no. 3 (19), pp. 20–31 (in Russ.).
32. Alexeeva O.K., Klebanov Yu.D., Safonova A.M., Sidorov G.L., Sumarokov V.N., Vinogradova E.A. Prep-aration of adsorption-catalytic and protective coatings on carbon fibers used for hydrogen purification. Int. J. Hydrogen Energy, 1999, vol. 24, pp. 241–246 (in Eng.).
33. Alekseeva O.K., Amirhanov D.M., Bryazkalo A.M., Fateev V.N., Chelyak M.M. Kompozitnye funkcionalʹnye materialy s pokrytiâmi iz metallov (splavov) Pt_gruppy ili ih zamenitelej dlâ zadač vodorodnoj ènergetiki. Dragocennye metally. Dragocen-nye kamni, 2006, no. 12 (156), pp. 139–150 (in Russ.).
34. Asanithi P., Chaiyakun S., Limsuwan P. Growth of silver nanoparticles by dc magnetron sputtering. J. of Nanomaterials, 2012, vol. 2012, Article ID 963609.
35. Slavcheva E., Ganske G., Topalov G., Mokwa W., Schnakenberg U. Effect of sputtering parameters on surface morphology and catalytic efficiency of thin plat-inum films. Applied Surface Sci., 2009, vol. 255, no. 13–14, pp. 6479–6486 (in Eng.).
36. Slavcheva E.P. Magnetron sputtered iridium oxide as anode catalyst for PEM hydrogen generation. Macedonian J. of Chem. and Chem. Eng., 2011, vol. 30, no. 1, pp. 45–54 (in Eng.).
37. Slavcheva E., Ganske G., Schnakenberg U. Sput-tered Pd as hydrogen storage for a chip-integrated mi-croenergy system. The Scientific World J., 2014, vol. 2014, Article ID 146126, 7 pages (in Eng.).
38. Dzhumaliev A.S., Nikulin Yu.V., Filimonov Yu.A. Vliânie naprâženiâ smeŝeniâ na podložke na teksturu, magnitnye svojstva i morfologiû poverhnosti plenok nikelâ. Geteromagnitnaâ mikroèlektronika, 2012, issue 13, p. 25 (in Russ.).
39. Dzhumaliev A.S., Nikulin Yu.V., Filimonov Yu.A. Vliânie naprâženiâ smeŝeniâ na strukturu, morfologiû i magnitnye svojstva plenok nikelâ, polučennyh magnetronnym raspyleniem na postoânnom toke. Nanoinženeriâ, 2013, no. 2, p. 24 (in Russ.).
40. Nikulin Yu.V., Dzhumaliev A.S., Filimonov Yu.A. Formirovanie teksturirovannyh plenok ferromagnitnyh 3–d metallov s različnoj kristallografičeskoj orientaciej i mikrostrukturnym stroeniem metodom magnetronnogo raspyleniâ na postoânnom toke. Nelinejnyj mir, 2013, no. 2, p. 5 (in Russ.).
41. Shtansky D.V., Gloushankova N.A., Bashkova I.A. et al. Multifunctional Ti–(Ca,Zr)–(C,N,O,P) films for load-bearing implants. Biomaterials, 2006, vol. 27, no 19, pp. 3519–3531 (in Eng.).
42. Fateev V., Glukhov A., Nikitin S., Markelov V., Alekseeva O., Grigoriev S. New physical technologies for catalyst synthesis and anticorrosion protection. Pro-ceeding of 5-th European PEFC&H2 Forum 2015, Lu-cerne, Switzerland, April 27–30 (in press) (in Eng.).
43. Fateev V., Kulygin V., Nikitin S., Porembskiy V., Ostrovskiy S., Glukhov A., Pushkarev. Plasma technolo-gies for water electrolyzers. Proceedings of 7-th Exergy, Energy and Environment Simposiun, France. Valenci-ennes, April 27–30, 2015 (in press) (in Eng.).
44. Brault P., Rouald`es S., Caillard A., Thomann A.-L., Mathias J., Durand J., Coutanceau C., L´eger J.-M., Charles C., Boswell R. Solid polymer fuel cell synthesis by low pressure plasmas: a short review. Eur. Phys. J. Appl. Phys., 2006, vol. 34, pp. 151–156 (in Eng.).
45. Bogatov V.A., Zaharov S.S., Kislyakov P.P., Krynin A.G., Hohlov Yu.A. Vliânie režimov magne-tronnogo napyleniâ na optiko-fizičeskie svojstva mednyh nanopokrytij. Nanomaterialy i nanotehnologii, 2011, no. 4, pp. 45–53 (in Russ.).
46. Yaldagard M., Jahanshahi M., Seghatoleslami N. Carbonaceous nanostructured support materials for low temperature fuel cell electrocatalysts - A Review. World J. of Nano Sci. and Eng., 2013, vol. 3, pp. 121–153 (in Eng.).
47. Huang H., Wang X. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J. Mater. Chem. A, 2014, vol. 2, pp. 6266–6291 (in Eng.).
48. Brault P., Caillard A., Thomann A.-L. Polymer electrolyte Fuel Cell elec-trodes grown by vapor deposi-tion techniques. Chem. Vap. Deposition, 2011, vol. 17, pp. 296–304 (in Eng.).
49. Wang X.X., Tan Z.H., Zeng M., Wang J.N. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability. Scientific Reports, 2014, vol. 3, no 28, p. 1 (in Eng.).
50. Novoselov K.S. Technology: Rapid progress in producing grapheme. Nature, 2014, vol. 505, no. 7483, pp. 291 (in Eng.).
51. Bo X., Guo L. Simple synthesis of macroporous carbon–graphene composites and their use as a support for Pt electrocatalysts. Electrochimica Acta, 2013, vol. 90, pp. 283– 290 (in Eng.).
52. Yang S.-Y., Chang K.-H., Lee Y.-F., Ma C.-C. M., Hu C.-C. Constructing a hierarchical graphene–carbon nanotube architecture for enhancing exposure of graphene and electrochemical activity of Pt nanoclusters. Electrochemistry Commun., 2010, vol. 12, pp. 1206–1209 (in Eng.).
53. Lv R., Cui T., Jun M.-S., Zhang Q., Cao A., Su D.S., Zhang Z., Yoon S.-H., Miyawaki J., Mochida I., Kang F. Open-ended, N-doped carbon nanotube–graphene hybrid nanostructures as high-performance catalyst support. Adv. Funct. Mater., 2011, vol. 21, pp. 999–1006 (in Eng.).
54. Shen Y.-L., Chen S.-Y., Song J.-M., Chen I.-G. Ultra-long Pt nanolawns supported on TiO2-coated car-bon fibers as 3D hybrid catalyst for methanol oxidation. Nanoscale Research Lett., 2012, vol. 7, pp. 237 (in Eng.).
55. Wang X., Li X., Liu D., Song S., Zhang H. Green synthesis of Pt/CeO2/graphene hybrid nanomaterials with remarkably enhanced electroca-talytic properties. Chem. Commun., 2012, vol. 48, pp. 2885–2887 (in Eng.).
56. Tabet-Aoul A., Mohamedi M. Interrelated func-tionalities of hierarchically CNT/CeO2/Pt nanostructured layers: synthesis, characterization, and electroactivity. Phys. Chem. Chem. Phys., 2012, vol. 14, pp. 4463–4474 (in Eng.).
57. Sun C.-L., Chen Li-C., Su M.-C. et al. Ultrafine platinum nanoparticles uniformly dispersed on arrayed CNx nanotubes with high electrochemical activity. Chem. Mater., 2005, vol. 17, no 14, pp. 3749–3753 (in Eng.).
58. Yoshii K., Tsuda T., Arimura T., Imanishi A., Torimoto T., Kuwabata S. Platinum nanoparticle immo-bilization onto carbon nanotubes using Pt-sputtered room-temperature ionic liquid. RSC Advances, 2012, vol. 2, pp. 8262–8264 (in Eng.).
59. Matolín V., Matolínová I., Václavů M. et al. Plat-inum-doped CeO2 thin film catalysts prepared by magne-tron sputtering. Langmuir, 2010, vol. 26, no. 15, pp. 12824–12831 (in Eng.).
60. Kim H.-T., Lee J.-K., Kim J. Platinum-sputtered electrode based on blend of carbon nanotubes and carbon black for polymer electrolyte fuel cell. J. of Power Sources, 2008, vol. 180, pp. 191–194 (in Eng.).
61. Zhang C., Hu J., Nagatsu M., Shu X., Toyoda H., Fang S., Meng Y. Magnetron sputtering of platinum na-noparticles onto vertically aligned carbon nanofibers for electrocatalytic oxidation of methanol. Electrochimica Acta, 2011, vol. 56, pp. 6033– 6040 (in Eng.).
62. Shang N., Papakonstantinou P., Wang P., Ravi S., Silva P. Platinum integrated graphene for methanol Fuel Cells. J. Phys. Chem. C, 2010, vol. 114, pp. 15837–15841 (in Eng.).
63. Jukk K., Kozlova J., Ritslaid P. et al. Magnetron sputtered PtNP/MWCNT composite electrocatalysts for oxygen reduction reaction. MA2013-02 224th ECS Meet-ing, San Francisco, CA. 2013. Abstract No 2473 (in Eng.).
64. Pham K.-C., Chua D. H. C., McPhail D. S., Wee A.T.S. The direct growth of graphene-carbon nanotube hybrids as catalyst support for high-performance PEM fuel cells. ECS Electrochemistry Letters, 2014, vol. 3, no 6, pp. F37 Langmuir F40 (in Eng.).
65. Khan A., Nath B. K., Chutia J. Nanopillar struc-tured platinum with enhanced catalytic utilization for electrochemical reactions in PEMFC. Electrochimica Acta, 2014, vol. 146, pp. 171–177 (in Eng.).
66. Brault P., Josserand Ch., Bauchire J.-M., Caillard A., Charles Ch., Boswell R.W. Anomalous diffusion mediated by atom deposition into a porous substrate. Phys. Rev. Lett., 2009, vol. 102, p. 045901 (in Eng.).
67. Brault P. Plasma deposition of catalytic thin films: Experiments, applications, molecular modeling. Surface & Coatings Technology, 2011, vol. 205, pp. S15–S23 (in Eng.).
68. Ayesh A.I., Mahmoud S.T., Qamhieh N., Karam Z.A. Fabrication and characterization of percolating nanocluster devices. J. Nanomed. Nanotechol., 2012, vol. 3, p. 1 (in Eng.).
69. Muratore C., Reed A.N., Bultman J.E., Ganguli S., Cola B.A., Voevodin A.A. Nanoparticle decoration of carbon nanotubes by sputtering. Carbon, 2013, vol. 57, pp. 274 Langmuir 281 (in Eng.).
70. Xie L., Brault P., Coutanceau C., Bauchire J.-M., Caillard A., Baranton S., Berndt J., Neytsda E.C. Efficient amorphous platinum catalyst cluster growth on porouscarbon: A combined molecular dynamics and experimental study GREMI. Applied Catalysis B: Envi-ronmental, 2015, vol. 162, pp. 21–26 (in Eng.).
71. Xie L., Brault P., Bauchire J.-M., Thomann A.-L., Bedra L. Molecular dynamics simulations of clusters and thin film growth in the context of plasma sputtering deposition. J. Phys. D: Appl. Phys., 2014, vol. 47, p. 224004 (in Eng.).
72. Gras-Marti A., Valles-Abarca J.A. Slowing down and thermalization of sputtered particle fluxes: Energy distributions. J. of Applied Physics, 1983, vol. 54, pp. 1071–1075 (in Eng.).
73. Meyer K., Schuller I.K., Falco C.M. Thermalization of sputtered atoms. J. of Applied Physics, 1981, vol. 52, pp. 5803–5805 (in Eng.).
74. Dameron A.A., Olson T.S., Christensen S.T. et al. Pt–Ru alloyed Fuel Cell catalysts sputtered from a single alloyed target. ACS Catal., 2011, vol. 1, no. 10, pp. 1307–1315 (in Eng.).
75. Veith G.M., Lupini A.R., Pennycook S.J., Ownby G.W., Dudney N.J. Nanoparticles of gold on γ-Al2O3 produced by dc magnetron sputtering. Journal of Catalysis, 2005, vol. 231, pp. 151–158 (in Eng.).
76. Veith G.M., Lupini A.R., Pennycook S.J., Villa A., Prati L., Dudney N.J. Magnetron sputtering of gold nanoparticles onto WO3 and activated carbon. Catalysis Today, 2007, vol. 122, pp. 248–253 (in Eng.).
77. Yamamoto H., Hirakawa K., Abe T. Surface modification of carbon nanofibers with platinum nano-particles using a “polygonal barrel-sputtering” system. Materials Letters, 2008, vol. 62, pp. 2118–2121 (in Eng.).
78. Akamaru S., Inoue M., Abe T. Surface modifica-tion of NaCl particles with metal films using the polygo-nal barrel-sputtering method. Materials Sci.Applic., 2013, vol. 4, pp. 29–34 (in Eng.).
79. Hiromi C., Inoue M., Taguchi A., Abe T. Optimum Pt and Ru atomic composition of carbon-supported Pt–Ru alloy electrocatalyst for methanol oxidation studied by the polygonal barrel-sputtering method. Electro-chimica Acta, 2011, vol. 56, pp. 8438–8445 (in Eng.).
80. Cavarroc M., Ennadjaoui A., Mougenot M., Brault P., Escalier R., Tessier Y., Durand J., Roualdès S., Sauvage T., Coutanceau C. Performance of plasma sputtered Fuel Cell electrodes with ultra-low Pt loadings. Electrochemistry Communications, 2009, vol. 11, no 4, pp. 858–861 (in Eng.).
81. Mougenot M., Andreazza P., Andreazza-Vignolle C., Escalier R., Sauvage Th., Lyon O., Brault P. Cluster organization in co-sputtered carbon-platinum films as revealed by grazing incidence X-ray scattering. J. of Na-noparticle Research, 2012, vol. 14, p. 672 (in Eng.).
82. Umeda M., Nagai K., Shibamine M., Inoue M. Methanol oxidation enhanced by the presence of O2 at novel Pt–C co-sputtered electrode. Phys. Chem. Chem. Phys., 2010, vol. 12, pp. 7041–7049 (in Eng.).
83. Umeda M., Matsumoto Y., Inoue M., Shironita S. O2-enhanced methanol oxidation reaction at novel Pt-Ru-C co-sputtered electrodes. Electrochimica Acta, 2013, vol. 101, pp. 142–150 (in Eng.).
84. Shironita S., Ueda M., Matsumoto Y, Umeda M. Novel O2-enhanced methanol oxidation performance at Pt-Ru-C sputtered anode in direct methanol fuel cell. J. of Power Sources, 2013, vol. 243, pp. 635–640 (in Eng.).
85. Corpuz A.R., Olson T.S., Joghee P. et al. Effect of a nitrogen-doped PtRu/carbon anode catalyst on the durability of a direct methanol fuel cell. Journal of Power Sources, 2012, vol. 217, pp. 142–151 (in Eng.).
86. Hirakawa K., Inoue M., Abe T. Methanol oxidation on carbon-supported Pt–Ru and TiO2 (Pt–Ru/TiO2/C) electrocatalyst prepared using polygonal barrel-sputtering method. Electrochimica Acta, 2010, vol. 55, pp. 5874–5880 (in Eng.).
87. Mougenot M., Caillard A., Brault P., Baranton S., Coutanceau C. High Performance plasma sputtered PdPt fuel cell electrodes with ultra low loading. Int. J. of Hy-drogen Energy, 2011, vol. 36, pp. 8429–8434 (in Eng.).
88. Ren Z., Xiao L., Wang G., Lu J., Zhuang L. In-termetallic Pt2Si: magnetron-sputtering preparation and electrocatalysis toward ethanol oxidation. Journal of Energy Chemistry, 2014, vol. 23, pp. 265–268 (in Eng.).
89. Gasda M. D., Teki R., Lu T.-M., Koratkar N., Eisman G. A., Gall D. Sputter-deposited Pt PEM Fuel Cell electrodes: particles vs layers. J. of The Electrochemical Society, 2009, vol. 156, no. 5, pp. B614–B619 (in Eng.).
90. Caillard A., Cuynet S., Lecas T. et al. Gas aggre-gation source based on pulsed plasma sputtering for the synthesis of PtX catalytic nanoclusters. ESCAMPIG XXII, Greifswald, Germany, July 15–19, 2014 (in Eng.).
91. Cuynet S, Caillard A, Lecas T, Bigarr´e J, Buvat P, Braul P. Deposition of Pt inside fuel cell electrodes using high power impulse magnetron sputtering. J. Phys. D: Appl. Phys., 2014, vol. 47, p. 272001 (5pp) (in Eng.).
92. Fateev V.N., Guseva M.I., Pahomov V.P., Kulikova L.N., Vladimirov B.G., Chekushkin Yu.N., Gordeeva G.V. Sintez anodnyh èlektrokatalitičeskih pokrytij metodom implantacii atomov otdači. Èlektrohimiâ, 1990, vol. 26, pp. 74–76 (in Eng.).
93. Kratzig A., Zachäus C., Brunken S. et al. RuS2 thin films as oxygen-evolving electrocatalyst: Highly oriented growth on single-crystal FeS2 substrate and their properties compared to polycrystalline layers. Phys. Sta-tus Solidi A, 2014, vol. 211, no. 9, pp. 2020–2029 (in Eng.).
94. Kim J.Y., Oh T.-K., Shin Y., Bonnett J., Weil K.S. et al. A novel non-platinum group electrocatalyst for PEM fuel cell application. Int. J. Hydrogen Energy, 2011, vol. 36, no. 7, pp. 4557–4564 (in Eng.).
Review
For citations:
Alexeeva O.K., Fateev V.N. APPLICATION OF THE MAGNETRON SPUTTERING FOR NANOSTRUCTURED ELECTROCATALYSTS SYNTHESIS (REVIEW). Alternative Energy and Ecology (ISJAEE). 2015;(7):14-36. (In Russ.) https://doi.org/10.15518/isjaee.2015.07.001