

HYDROGEN POWER PLANTS FOR AIRCRAFT
https://doi.org/10.15518/isjaee.2018.19-21.062-071
Abstract
The paper considers the prospects of using fuel cells as a source of energy for aircraft. For their supply, it is suggested to use hydrogen accumulation systems based on aluminum hydrides which are the most safe and efficient in terms of energy capacity, extraction temperature. The technologies for obtaining materials based on aluminum hydrides can be transferred from previously developed technologies of the production of electrolytic capacitors. The brief comparative analysis of existing fuels and forms of fuel storage is given. The paper substantiates the use of aluminum for the accumulation of hydrogen in the form of metal hydride. The most detailed consideration is given to the anodic treatment of aluminum, because the formation of aluminum hydride needs a foil with a high degree of surface development. A high degree of development of the material surface makes it possible to carry out processes of rapid charging of the material with hydrogen ions in the formation of aluminum hydrides. The presence of pores on the foil surface provides an increase in the degree of adaptation of the functional properties of the drive to the operating modes of the power plant. This property is due to the ability to flexibly control the process of the pore structure formation of a given morphology providing the necessary reduction effect. The paper presents the basic positions determining the peculiarity of the anodic processing of aluminum foil. These positions deal with the physicochemical properties of the pure aluminum and its compounds, oxides and hydrides, and their behavior under the conditions of the electrochemical reactions. Moreover, the paper indicates the possibility of parallel processes on electrodes: the oxidation and reduction of water, which are necessary condition for ensuring the self-consistent processes in the processing of aluminum. The experimental data have been obtained using the internal friction devices. We have shown the prospects of using of the aluminum hydrides in aviation and substantiated the solution to energy problems in aviation on the basis of deepening and expanding the scale of research into hydrogen energy technologi es. The results of the work can be used for the technology of volumetric storage and transport of electric energy.
About the Authors
Yu. N. ShalimovRussian Federation
Yury Shalimov - D. Sc. in Engineering, Professor, Chief Researcher, the Laboratory for Innovative Design and High Technology at the Aircraft Engineering Department of Voronezh State Technical University.
Education: Voronezh Polytechnic Institute, 1964.
Research interests: thermophysics and thermophysical processes; hydrogen and alternative energy; energy saving technologies; completed recycling cycles of industrial and agricultural production; innovative technologies in researches.
Publications: more than 500, including 2 monographs, 10 teaching aids, 25 patents.
14 Moskovsky Av., Voronezh, 394026.
A. V. Astakhov
Russian Federation
Alexander Astakhov - Postgraduate, Senior Test Engineer GLITS them. V.P. Chkalov.
Education: Irkutsk Military Aviation Engineering Institute (IVAII, 2003); Russian Academy of National Economy and Public Administration under the President of the Russian Federation (RANEPA under the President of the Russian Federation, 2016).
Research interests: testing of aircraft units.
14 Kolymazhnyy Lane, Moscow, 119019.
Tel.: +7 (495) 696-12-32.
N. V. Brysenkova
Russian Federation
Natalia Brysenkova - Head of the Department of Environmental Safety and Labor Protection.
Education: Master's Degree in Chemistry, Voronezh State University.
Research interests: hydrogen energy; hydrogen storage.
Publications: 13.
14 Plekhanovskaya St., Voronezh, 394018.
Tel: +7 (473) 252-12-59.A. V. Russu
Russian Federation
Alexander Russu - Research Engineer at the Research Sector of the Aircraft Department, Voronezh State Technical University.
Education: Voronezh State University, Faculty of Physics, 1998.
Research interests: hydrogen and renewable energy.
Publications: 18.
14 Moskovsky Av., Voronezh, 394026.
References
1. Gamburg D.Yu., Semenov V.P., Dubrovkin N.F., Smirnova L.N. Vodorod. Svoistva, poluchenie, hranenie, transportirovanie, primenenie: Sprav.izd.: D.Yu. Gamburga, N.F. Dubrovkina (Eds.). Moscow: Himiya Publ., 1989; 672 р. (in Russ.).
2. Shpil'rajn E.E., Malyshenko S.P., Kuleshov G.G. Vvedenie v vodorodnuyu energetiku. Moscow: Energoatomizdat Publ., 1984; 264 р. (in Russ.).
3. Marchenko O.V., Solomin S.V. Konkurentosposobnost' sistemy proizvodstva vodoroda i ispol'zovaniya toplivnyh elementov. Science Time, 2016;7(31):135–140 (in Russ.).
4. Dunikov D.O. Vodorodnye energeticheskie tehnologii. V sbornike: Vodorodnye energeticheskie tehnologii / Materialy seminara laboratorii VEHT OIVT RAN: sbornik nauchnyh trudov. D.O. Dunikov (Ed) [et al.]. Moscow, 2017; рp. 5–21 (in Russ.).
5. Bredihin S.I., Golodnickij A.EH., Drozhzhin O.A., Istomin S.YA., Kovalevskij V.P., Filippov S.P. Tehniko-ekonomicheskie i marketingovye issledovaniya dolgosrochnyh perspektiv primeneniya v Rossii energoustanovok na baze toplivnyh elementov. Book: Statsionarnye energeticheskie ustanovki s toplivnymi elementami: materialy, tehnologii, rynki. Moscow, 2017; рp. 325–377. (in Russ.)
6. Fateev V.N., Alekseeva O.K., Porembskii V.I., Mihalev A.I., Nikitin S.M. Korrozionno-stoikie elektrody/kollektory toka dlya anodov elektroliznyh yacheek s tverdym polimernym elektrolitom. International Journal for Alternative Energy and Ecology (ISJAEE), 2017;25–27(237–239):88–99 (in Russ.).
7. Tarasevich M.R., Bogdanovskaya V.A., Kuzov A.V., Radina M.V. Sravnitel'nye harakteristiki katodov s razlichnymi kataliticheskimi sistemami v vodorod-kislorodnyh i vodorod-vozdushnyh toplivnyh elementah s proton-provodyashchim polimernym elektrolitom. Elektrohimiya, 2017;7:804–812 (in Russ.).
8. Shmelev V.M., Arutyunov V.S., Yang H., Im Ch. O metodah generatsii vodoroda dlya pitaniya vysokotemperaturnyh toplivnyh elementov. Himicheskaya fizika, 2017;36(5):38–46 (in Russ.).
9. Dmitriev A.L., Ikonnikov V.K. Vodorodnaya zapravochnaya stantsiya na osnove ustanovki polucheniya vodoroda gidrotermal'nym metodom okisleniya promyshlennyh poroshkov alyuminiya. International Journal for Alternative Energy and Ecology (ISJAEE), 2017;10–12:75–85. (in Russ.)
10. Okorokova N.S., Pushkin K.V., Sevruk S.D., Farmakovskaya A.A. Otsenka energeticheskih harakteristik kombinirovannoi energeticheskoi ustanovki gidronnyi himicheskii istochnik toka – kislorodno-vodorodnyi elektrohimicheskii generator. Izvestiya Rossijskoi akademii nauk. Energetika, 2017;1:65–73 (in Russ.).
11. Yanovskij L.S., Baikov A.V., Aver'kov I.S., Lipilin A.S., Nikonov A.V. Tverdooksidnye toplivnye ehlementy kak osnova dlya sozdaniya aviatsionnyh dvigatelei novogo pokoleniya. Teplovye processy v tehnike, 2017;1:2–6 (in Russ.).
12. Ouyang L., Yang T., Zhu M., Wang H., Min D., Luo T., Xiao F., Tang R. Hydrogen storage and electrochemical properties of pr, nd and co-free La13.9Sm24.7Mg1.5Ni58al1.7Zr0.14Ag0.07 alloy as a nickelmetal hydride battery electrode. Journal of Alloys and Compounds, 2018;735:98–103.
13. Nakagawa Y., Lee C.-H., Matsui K., Kousaka K., Isobe S., Hashimoto N., Yamaguchi S., Miyaoka H., Kojima Y., Ichikawa T. Doping effect of nb species on hydrogen de-sorption properties of AlH3. Journal of Alloys and Compounds, 2018;734:55–59.
14. Sherif S.A., Goswami D.Y., Stefanakos E.K., Steinfeld A. (Eds.) Handbook of Hydrogen Energy. CRC Press, Boca Raton, 2014; 1042 p.
15. Alavi S., Ripmeester J.A. Simulations of hydrogen gas in clathrate hydrates. Molecular Simulation, 2017;43(10–11):808–820.
16. Xiao J., Tong L., Yang T., Bjnard P., Chahine R. Lumped parameter simulation of hydrogen storage and purification systems using metal hydrides. International Journal of Hydrogen Energy, 2017; 42(6):3698–3707.
17. Afzal M., Mane R., Sharma P. Heat transfer techniques in metal hydride hydrogen storage: a review. International Journal of Hydrogen Energy, 2017;42(52):30661–30682.
18. Shervani S., Gupta A., Balani K., Subramaniam A., Mukherjee P., Sen P., Mishra G., Sivakumar S., Illath K., Ajithkumar T.G. Multi-mode hydrogen storage in nanocontainers. International Journal of Hydrogen Energy, 2017;42(38):24256–24262.
19. Shalimov Yu.N., Mandrykina I.M., Litvinov Yu.V. Optimizathiya elektro-himicheskogo protsessa obrabotki alyuminievoi fol'gi v proizvodstve kondensatorov. Voronezh: VGTU Publ., 2000; 343 р. (in Russ.).
20. Chertko N.K., Chertko E.N. Geohimiya i ekologiya himicheskih elementov: Spravochnoe posobie. Mn.: Izdatel'skij centr BGU Publ., 2008; 140 р. (in Russ.).
21. Grankin E.A. Vliyanie uslovii elektroliza i termicheskoi obrabotki na vnutrennee trenie i korrozionnuyu stoikost' elektroliticheskogo hroma: Thesis of Ph.D. in Engineering. Voronezh: VPI Publ., 1973; 116 р. (in Russ.).
22. Shalimov Yu.N. Vliyanie Teplovyh i elektricheskih polei na elektrohimicheskie protsessy pri impul'snom elektrolize: Thesis of D.Sc. in Engineering. Voronezh, 2006; 354 р. (in Russ.).
23. Altuhov V.K., Shalimov Yu.N. Intensifikatsiya protsessa travleniya alyuminievoi fol'gi s pomoshch'yu ul'trazvukovyh kolebanii. Ul'trazvukovaya tehnika, 1966;1:27–32 (in Russ.).
24. Nevskii O.I., Grishina E.P. Bar'ernye plenki na alyuminii: monografiya. Ivanovo, 2003; 84 р. (in Russ.).
Review
For citations:
Shalimov Yu.N., Astakhov A.V., Brysenkova N.V., Russu A.V. HYDROGEN POWER PLANTS FOR AIRCRAFT. Alternative Energy and Ecology (ISJAEE). 2018;(19-21):62-71. (In Russ.) https://doi.org/10.15518/isjaee.2018.19-21.062-071