

MODELING AND SIMULATION OF THE PRODUCTION OF HYDROGEN USING HYDROELECTRICITY IN VENEZUELA
https://doi.org/10.15518/isjaee.2018.22-24.088-095
Abstract
The purpose of this work is to develop and evaluate a mathematical model for the process of hydrogen production in Venezuela, via electrolysis and using hydroelectricity, with a view to using it as an energy vector in rural sectors of the country. Regression models were prepared to estimate the fluctuation of the main variables involved in the process: the production of hydrogen, the efficiency of energy conversion, the cost of hydroelectricity and the cost of the electrolyser. Finally, the proposed model was applied to various different time-horizons and populations, obtaining the cost of hydrogen production in each case. The results obtained are well below those mentioned in the references, owing largely to the low cost of the electricity used, which accounts for around 45% of the total cost of the system.
About the Authors
A. ContrerasaSpain
Alfonso Contrerasa
Department of Chemistry
UNED, 28040, Madrid
F. Possob
Venezuela, Bolivarian Republic of
Fausto Possob
ULA-Táchira, Sede Paramillo, 5001, San Cristуbal
Т. N. Veziroglu
United States
T. Nejat Veziroglu - Ph.D. in Heat Transfer, Professor, President of International Association for Hydrogen Energy, a member of 18 scientific organizations
Clean Energy Research Institute
P.O. Box 248294 Coral Cables, FL 33124-0620
References
1. Dunn J. Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy, 2002;27:235–64.
2. Galli S., Stefanoni M. Development of a solar hydrogen cycle in Italy. Int. J. Hydrogen Energy, 1997;22:453–8.
3. Mourelatos A., Diakoulari D., Papagiannakis L. Impact of CO2 reduction policies on the development of renewable energy sources. Int. J. Hydrogen Energy, 1998;23:129–49.
4. Abdallah M., Asfour S., Veziroglu T. Solar– hydrogen energy system for Egypt. Int. J. Hydrogen Energy, 1999;24:505–17.
5. Lufti N., Veziroglu T. Solar–hydrogen demonstration project for Pakistan. Int. J. Hydrogen Energy, 1992;17:339–44.
6. De Souza S. Hydrogen energy as a possibility of utilization of the secondary energy of brazilian hydropower plant of Itaipu. Proceedings of the 13th world hydrogen energy conference. Beijing, China: 2000. p. 116–21.
7. de Lima L., Veziroglu T. Long-term environmental and socio-economic impact of a hydrogen energy program in Brazil. Int. J. Hydrogen Energy, 2001;26:39–45.
8. Da Silva E., Marin A., Ferreira P., Camargo J., Apolinario F., Pinto C. Analysis of hydrogen production from combined photovoltaics, wind energy and secondary hydroelectricity supply in Brazil. Solar Energy, 2005;78:670–7.
9. Venezuela: country analysis brief, at _http://www.eia.doe.gov/emeu/cabs_; 2005.
10. PODER: Plan Operativo de Energías Renovables, Dirección de Planificación y Economнa de la Energía. Ministerio de Energía y Minas, Venezuela, 2002.
11. PODE: Petróleo y otros datos estadísticos, Direcciуn de Planificación y Economía de la Energía. Ministerio de Energía y Minas, Venezuela, 2004.
12. Martínez J. Energías renovables. Potencial energético de los recursos aprovechables. División de Alternativas Energéticas, Ministerio de Energía y Minas, Venezuela, 2001.
13. Reporte Socio-Demográfico. Instituto Nacional de Estadística, Venezuela, 2004.
14. CAVEINEL. Cámara Venezolana de la Industria Eléctrica. Estadísticas Consolidadas, 2004, at _http://www.caveinel.org.ve/estadнsticas_.
15. CIER, Comisión de Integración Energética Regional: Precio de la Energía a Consumidores Finales, 2006. At _http://www.cier.org.uy/2005/7_.
16. Kruger P. Electric power requirement in the United States for large-scale production of hydrogen fuel. Int. J. Hydrogen Energy, 2000;25:1023–33.
17. Ivy J. Summary of electrolytic hydrogen production. NREL/MP-56036734, 2004.
18. Cloumann A., d’Erasmo P., Nielsen M., Halvorsen B. Analysis and optimization of equipment cost to minimize operation and investment for a 300 MW electrolysis plant. Proceedings of the 12th world hydrogen energy conference, 1998. p. 143–9.
19. Vidueira J., Contreras A., Veziroglu T. PV autonomous installation to produce hydrogen via electrolysis, and its use in FC buses. Int. J. Hydrogen Energy, 2003;28:927–39.
20. Bockris J. The origin of ideas on a hydrogen economy and its solution to the decay of the environment. Int. J. Hydrogen Energy, 2002;27:731–40.
21. Thomas C.E., Kuhn I. Electrolytic hydrogen production infrastructure options evaluation. NREL/TP463-7903, 1995.
22. Oulette N., Rogner H., Scott D.S. Hydrogen from remote excess hydroelectricity. Part I: production plant capacity and production cost. Int. J. Hydrogen Energy, 1995;20:865–71.
23. Padrу C.E.G, Putshe V. Survey of the economics of hydrogen technologies. NREL/TP-57027079, 1999.
24. Basye L., Swaminathan S. Hydrogen production costs: a survey. DOE/GO/10170-118, 1997.
25. Moore R., Raman V. Hydrogen infrastructure for fuel cell transportation. Int. J. Hydrogen Energy, 1998;23:617–20.
Review
For citations:
Contrerasa A., Possob F., Veziroglu Т.N. MODELING AND SIMULATION OF THE PRODUCTION OF HYDROGEN USING HYDROELECTRICITY IN VENEZUELA. Alternative Energy and Ecology (ISJAEE). 2018;(22-24):88-95. https://doi.org/10.15518/isjaee.2018.22-24.088-095