THE EVOLUTION OF IDEAS ABOUT QUASI-ONE-DIMENSIONAL WHISKERS GROWTH
Abstract
In the review the characteristic of contemporary state in field of whiskers growth investigations is presented. Physical bases of whisker growing are expounded in the model of diffusive-dislocation growth and on a scheme vapour-liquid-solid (VLS). The significant attention is paid to critical revision of the present views on the VLS growth mechanism and new droplet (in author’s terminology) crystal growth mechanism is represented. The fundamental principles of one-dimensional crystals controlled growing are described. Practical realization of these principles opens the large-scaled use of whiskers in the micro- and nanoelectronic devices. Some growth effects caused by droplet mechanism are considered.
About the Authors
V. A. Nebol'sinRussian Federation
doctor of technical sciences, professor, dean of faculty of the radio engineering and electronics
A. A. Shchetinin
Russian Federation
doctor of physico-mathematical sciences, professor of department material science and metal physics
References
1. Wagner R.S., Ellis W.S. Vapour-Liquid-Solid Mechanism of Single Crystal Growth // Appl. Phys. Lett. 1964. Vol. 4, No. 5. P. 89-90.
2. Sears G.W. A Mechanism of Whisker Growth // Acta Met. 1955. Vol. 3, No. 4. P. 367-369.
3. Dittmar W., Neumann K. Z. Uber die Gestalt und Wachstum nadelformiger Kaliumkristall // Z. Elektrochem, 1957. Vol. 61, No. 1. S. 70-73.
4. Blakely J.M., Jackson K. Growth of Crystal Whiskers // J. Chem. Phys. 1962. Vol. 37, No. 2. P. 428-430.
5. Vagner P. Rost kristallov po mehanizmu par-židkost'-kristall. V sb.: Monokristal'nye volokna i armirovannye imi materialy / Pod red. А.T. Tumanova. M.: Mir, 1973.
6. Givargizov E.N. Rost nitevidnyh i plastinčatyh kristallov iz para. M.: Nauka, 1977.
7. Nebol'sin V.А., Ŝetinin А.А. Rost nitevidnyh kristallov. Voronež: VGU, 2003.
8. Nebol'sin V.А., Ŝetinin А.А. Rol' poverhnostnoj ènergii pri kristallizacii kremniâ po mehanizmu par-židkost'-kristall // Neorgan. mater. 2003. T. 39, № 9. S. 899-903.
9. Dubrovskii V.G., Cirlin G. E., Sibirev N. V. e.a. New Mode of Vapor-Liquid-Solid Nanowire Growth // Nano Lett. 2011. Vol. 11. P. 1247–1253.
10. Najdič Û.V. Kontaktnye âvleniâ v metalličeskih rasplavah. Kiev: Naukova dumka, 1972.
11. Givargizov E.I. Rol' adsorbcionnyh sloev pri èpitaksii plenok i nitevidnyh kristallov. V kn.: Rost kristallov. 1980. T. 13. S. 27-33.
12. Nebol'sin V.А., Ŝetinin А.А. Mehanizm kvaziodnomernogo rosta NK Si i GaP iz gazovoj fazy // Neorgan. mater. 2008. T. 44, № 10. C. 1033–1040.
13. Gorelik S.S., Daševskij M.Â. Materialovedenie poluprovodnikov. M.: Metallurgiâ, 1988.
14. Schmidt V., Senz S., Gosele U. Diameter-dependent growth direction of epitaxial silicon nanowires // Nano Lett. 2005. Vol. 5. P. 931-935.
15. Kashchiev D. Nucleation: Basic Theory with Applications (Oxford, Butterworth Heinemann, 2000). http://www.ipc.bas.bg/PPages/Kash/Monograph.htm.
16. Wacaser B. Nanoscale Crystal Growth / Doctor. dissert. Lund University, Sweden, 2007.
17. Loskiewicz W. High Temper-High Pressures // Przeg. Gom.-Hutn. 1929. Vol. 21. P. 583-611.
18. Diagrammy sostoâniâ dvojnyh metalličeskih sistem. Spravočnik v 3-h tomah / Pod red. N.P. Lâkiševa. T. 1. M.: Mašinostroenie, 1996.
19. Lensch-Falk J.L., Hemesath E.R., Perea D.E., Lauhon L.J. Show Affiliations Alternative catalysts for VSS growth of silicon and germanium nanowires // J. Mater. Chem. 2009. Vol. 19. P. 849-857.
20. Dick K.A., Deppert K., Martensson T., Mandl S., Samuelson L., Seifer W. Failure of the vapor–liquid– solid mechanism in Au-assisted MOVPE growth of InAs nanowires // Nano Lett. 2005. Vol. 5. P. 761-764.
21. Tchernycheva M., Travers L., Patriarche G., Glas
22. F., Harmand J.C., Cirlin G.E., Dubrovskii V.G. Au-assisted molecular beam epitaxy of InAs nanowires: Growth and theoretical analysis // J. Appl. Phys. 2007. Vol. 102. R. 094313.
23. Persson A.I., Larsson M.W., Stengstrom S., Ohlsson B.J., Samuelson L., Wallenberg L.R. Solid-phase diffusion mechanism for GaAs nanowire growth // Nature Mater. 2004. Vol. 3, No. 10. P. 677-681.
24. Dubrovskij V.G., Cyrlin G.È., Ustinov V.M. Poluprovodnikovye nitevidnye nanokristally: sintez, svojstva, primeneniâ // Fizika i tehnika poluprovodnikov. 2009. T. 43, vyp. 12. S. 1585-1628.
25. 24 Binary alloy phase diagrams, 2nd edn., ed. by T.B. Massalski // ASM Int. Metals Park, Ohto, 1990.Vol. 1. P. 369.
26. Wang Y., Schmidt V., Senz S., Gösele U. Epitaxial growth of silicon nanowires using an aluminium catalyst // Nature nanotechnology. 2006. Vol. 1, No. 3. P. 186-189.
27. Wittemann J.V., Münchgesang W., Senz S., Schmidt V. Silver catalyzed ultrathin silicon nanowires grown by low-temperature chemical-vapor-deposition // J. of Appl. Phys. 2010. Vol. 107. P. 096105.
28. Kamins T.I., Williams R.S., Basile D.P., Hesjedal, and Harris J.S. Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms // J. of. Appl. Phys. 2001. Vol. 89. P. 1008– 1016.
29. Nebol'sin V.А., Vorob'ev А.Û. Rol' poverhnostnoj ènergii pri roste uglerodnyh nanotrubok v processe katalitičeskogo piroliza acetilena // Neorgan. mater. 2011. T. 47, № 2. S. 168-172.
30. 29 Nebol'sin V.А., Ŝetinin А.А., Dolgačev А.А., Korneeva V.V. Vliânie prirody metalla-rastvoritelâ na skorost' rosta nitevidnyh kristallov kremniâ // Neorgan. mater. 2005. T. 41, № 11. S. 1425-1428.
31. Nebol’sin V.A., Shmakova S.S. Effect of the Geometric Factor on the Growth of Silicon Micro- and Nanowhiskers // Inorg. Mater. 2014. Vol. 50, No. 1. P. 1–5.
32. Gladkikh N.T., Niedernayer R., Spieqel K. Nachweis großer Schmelzpunkt serniedrigungen bei dunen Metallschichten // Phys. Stat. Sol. 1966. Vol. 15, No. 1. P. 181-192.
33. Glazov V.M., Zemskov V.S. Fiziko-himičeskie osnovy legirovaniâ poluprovodnikov. M.: Nauka, 1967.
34. Buffat P., Borel J.P. Size effect on the melting temperature of gold particles // Phys. Rev. A. 1976. Vol. 13. P. 2287-2298.
35. Shtrikman H., Popovitz-Biro R., Kretinin A., Heiblum M. Stacking-Faults-Free Zinc Blende GaAs Nanowires // Nano Lett. 2009. Vol. 9, No. 1. P. 215-219.
36. Lubov M.N., Kulikov D.V., Trušin Û.V. Kinetičeskaâ model' rosta nitevidnyh nanokristallov arsenida galliâ // ŽTF. 2010. T. 80, Vyp. 1. S. 85-91.
37. Harmand J.C., Patriarche G., P´er´e-Laperne N., M´erat-Combes M.-N., Travers L., Glas F. Analysis of vapor-liquid-solid mechanism for Au-assisted GaAs nanowire growth // Appl. Phys. Lett. 2005. Vol. 87. P. 203 101.
38. Gorûnova N.А. Složnye almazopodobnye poluprovodniki. M.: Sovetskoe radio, 1968.
39. Suyatin D.B., Jain V., Nebol’sin V.A., Trägårdh J., Messing M.E., Wagner J.B., Persson O., Timm R., Mikkelsen A., Maximov I., Samuelson L., Pettersson H. Strong Schottky barrier reduction at Au-catalyst/GaAsnanowire interfaces by electric dipole formation and Fermi-level unpinning // Nat. Commun. 2014. No. 5. P. 3221.
40. Glas F., Harmand J.C., Patriarche J. Why does wurtzite form in nanowires of III-V zinc-blende semiconductors // Phys. Rev. Lett. 2007. Vol. 99. P. 146101.
41. Dubrovskii V.G., Physical consequences of the equivalence of conditions for steady-state growth of nanowires and the nucleation on triple phase line // Tech. Phys. Lett. 2011. Vol. 37, No. 1. P. 53-57.
Review
For citations:
Nebol'sin V.A., Shchetinin A.A. THE EVOLUTION OF IDEAS ABOUT QUASI-ONE-DIMENSIONAL WHISKERS GROWTH. Alternative Energy and Ecology (ISJAEE). 2015;(3):62-78. (In Russ.)