Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

WET BURNING – THE MODERN TREND IN ENVIRONMENTAL BENIGN FUEL COMBUSTION AND IN SOLUTION TO THE PROBLEM OF SUSTAINABLE DEVELOPMENT OF THE POWER GENERATION

https://doi.org/10.15518/isjaee.2018.25-30.096-117

Abstract

The article considers the role and place of water and water vapor in combustion processes with the purpose of reduction the effluents of nitrogen oxides and carbon oxide. We have carried out the complex of theoretical and computational researches on reduction of harmful nitrogen and carbon oxides by gas fuel combustion in dependence on humidity of atmospheric air by two approaches: CFD modeling with attraction of DRM 19 chemical kinetics mechanism of combustion for 19 components along with Bowman’s mechanism used as “postprocessor” to determine the [NO] concentration; different thermodynamic models of predicting the nitrogen oxides NO formation. The numerical simulation of the transport processes for momentum, mass and heat being solved simultaneously in the united equations’ system with the chemical kinetics equations in frame of GRI methane combustion mechanism and NO formation calculated afterwards as “postprocessor” allow calculating the absolute actual [CO] and [NO] concentrations in dependence on combustion operative conditions and on design of furnace facilities. Prediction in frame of thermodynamic equilibrium state for combustion products ensures only evaluation of the relative value of [NO] concentration by wet combustion the gas with humid air regarding that in case of dry air – oxidant. We have developed the methodology and have revealed the results of numerical simulation of impact of the relative humidity of atmospheric air on harmful gases formation. Range of relative air humidity under calculations of atmospheric air under impact on [NO] and [CO] concentrations at the furnace chamber exit makes φ = 0 – 100%. The results of CFD modeling have been verified both by author’s experimental data and due comparing with the trends stated in world literature. We have carried out the complex of the experimental investigations regarding atmospheric air humidification impact on flame structure and environmental characteristics at natural gas combustion with premixed flame formation in open air. The article also proposes the methodology for evaluation of the nitrogen oxides formation in dependence on moisture content of burning mixture. The results of measurements have been used for verification the calculation data. Coincidence of relative change the NO (NOx) yield due humidification the combustion air revealed by means of CFD prediction has confirmed the qualitative and the quantitative correspondence of physical and chemical kinetics mechanisms and the CFD modeling procedures with the processes to be studied. A sharp, more than an order of reduction in NO emissions and simultaneously approximately a two-fold decrease in the CO concentration during combustion of the methane-air mixture under conditions of humidification of the combustion air to a saturation state at a temperature of 325 K.

About the Author

B. S. Soroka
The Gas Institute of the National Academy of Sciences of Ukraine (NASU)
Ukraine

Boris Soroka -D.Sc. (Engineering), Professor, Head of Department of High Temperature Heat & Mass transfer

39 Degtyarivska St., Kyiv, 03113



References

1. Annual energy outlook. August 2016. US Energy Information Administration [E-resource]. Available on: www.eta.gov./forecasts/deo (03.16.2018).

2. Guillet R. Porous Exchanger and Water Vapor Pump the Altarex Boiler. 1995 International Gas Research Conference; Proceedings; Cannes, France, 6–9 November, 1995; Dan A. Dolenc, editor. Volume II. Rockville, MD, Government Institutes, Inc., 1996; pp. 2783–2792.

3. Beneke F. Klimaziele und ihre Auswirkungen auf die Thermoprozessindustrie. Processwärme – Thermoprocesstechnik. Warme – behandlung, Anlagenbau und – betrieb, 2018;(1):41–42.

4. Soroka B.S. Climate factors influence over heat engineering characteristics energy efficiency and evaluation of environmental consequences of gas fuel combustion (Vlijanie klimaticheskih factorov na teplotehnicheskije harakteristiki energeticheskuyu efekktivnisty I otsenka ekologicheskih posledstvijk szzhiganija gazogo topliva), International Scientific Journal for Alternative Energy and ecology (ISJAEE), 2017;4–6:116–129 (in Russ.).

5. Ambient Condition Effects on NOx and CO emissions from process heaters / 2008, ASME Intern. Mechanical Engineering Conference, November 2–6, 2008, Boston, Mass., USA, IMECE 2008 – 68284. – 112 р.

6. Overview of Greenhouse Gases / Greenhouse Gas Emissions [E-resource]. Available on: http://www.epa.gov/ghgemissions… (03.22.2018).

7. Humid Air Motor Technology for green profits. – MAN Prime Serv [E-resource]. Available on: http://www.mandieselturbo.2018. – 7 р. (03.23.2018).

8. The desert dust – to harm and to good // The Generalization materials of the “Provention Magazine” (Pyl’ pustyni – I vo vred, I vo blago / Po materialam zhurnala “Zhurnal profilaktiki” (SSHA) “2000” (Yezhenedel’nik), 20188 (855), 23.II. / Aspekty. – S4 (in Russ.).

9. Nakicenovic, N. SDEWES 2014.1056 Achieving Sustainable Development Coals (Sdg) Including Energy for All within Planetary Boundaries in Sustainable Development of Energy. Water and Environment Systems, 2015; pp. 61–62.

10. Jaffe A.M. Green Giant. Renewable Energy and Chinese Power [E-resource]. / Foreign Affairs, March / April 2018 Issue. – Available on: https://www.foreignaffairs.com/articles/china/20180213/green-giant (03.27.2018)

11. Rooney T. Carbon Everywhere but What about the Water. Renewable Energy World, 2010; Jan.11:1–6.

12. Altfeld K., Schley P. Entwicklung der Erdgas – beschaffenheiten in Europa. Gaswärme Int., 2012;2:57–63.

13. Leicher J. et al. Gasbeschaffenheitsänderungen: Lösungsansätze für industrielle Feuerungsprozesse. Gaswärme Int., 2013;6:43–56.

14. Altfeld K., Pinchbeck D. Admissible hydrogen concentrations in natural gas systems. Gas for energy, 2013;3:1–12.

15. Bondarenko B.I., Soroka B.S., Bezuglyy V.K. Carbon interphase exchange thermodynamics and transfer processes (Mezhfaznyy uglerodoobmen: termodinamika I protsessy perenosa: Monografiya). Kiyv: NVP “Naukova dumka” Publ., 2013; 223 p. (in Russ.).

16. Boumen K.T. The kinetics of formation and decomposition of pollutants under combustion. In: The formation and decomposition of pollutants in the flame (Kinetika obrazovaniya I razlozheniya zagryaznyayushchikh veshchestv pri gorenii. V knige: Obrazovaniye I razlozheniye zagryaznyayushchikh veshchestv v plameni: Per. c angl. / Red. Chigir N.A. Moscow: Mashinostroeniye Publ., 1981; pp. 59 – 83 (in Russ.).

17. Soroka B.S., Zgurskiy V.A., Khinkis M. Lowemission burning of premixed gas-air mixtures in the chamber by combustion products recirculation (Nizkoemissionnoye szhiganiye podgotovlennykh gazovykh smesey v kamere s retsirkulyatsiyey produktov sgoraniya). Sovremennaya nauka: issledovaniya, idei, rezul’taty, tekhnologii, 2013;1(12):368–374 (in Russ.).

18. Szewczyk, D. High Temperature Burners (HTB) as the result of the connection of HiTAC combustion technology with central recuperative systems / D. Szewczyk, J. Engdahl, A. Stachowski // Proceedings: 8th International Symposium on High Temperature Air Combustion and Gasification. Poznan, Poland, 2010; pp. 337–345.

19. Kazakov A., Frenklach M. Natural gas reduced Combustion mechanism [E-resource]. Available on: http://www.me.berkeley.edu/drm/ (04.02.2018).

20. Hermann F., Klingmann J., Gabrielsson R. Computational and Experimental Investigation of Emissions in a Highly Humidified Premixed Flame. Proceedings of 2003 ASME Turbo Power for Land, Sea & Air. Atlanta, Georgia, US, 2003; GT 2003–38337.

21. Soroka B.S., Horupa V.V. Analysis of the Process of Water Vapor Condensation within Gas Atmospheres and Combustion Products. Energy Technologies and Resource saving, 2017;1: 3–19 (in Russ.).

22. Bruhanov O.N., Mastrukov B.S. Fluid dynamics, combustion and heat transfer under fuel burning (Aerodynamika, gorenie I teploobmen pri sgiganie topliva: Spravochnoe posobie). St. Petersburg: Nedra Publ., 1994; 317 p. (in Russ.).

23. Soroka B., Zgurskyi V., Vorobyov N. Development of Computation Techniques and Data Generalization on Burning Velocity of Dry and Humidified Inflammable Gas Fuel-Oxidant Mixtures. International Journal of Energy for a Clean Environment (IJECE), 2011;12(2–4):187–208.

24. Soroka B. et al.Preventing autoignition inside the burner with high-temperature oxidant preheating. International Journal of Energy for a Clean Environment, 2017;18(2):113–122.

25. Göke S., Paschereit C.O. Influence of Steam Dilution on NOx Formation in Premixed Natural Gas and Hydrogen Flames. – Copyring 2012 by S. Göke. Published by the American Institute of Aeronaufics and Astronautics, Inc. (AIAA) with permission. AIAA; 15 p.

26. Bogdanova V., Moreau J. Guillet R. The water vapor pump technologies back in France. CIEC, 2014, June; 4 p. [E-resource]. Available on: https://www.ciec.fr/wpcontent/themes/ciec/assets/fichier/english-pave.pdf. – (04.05.2018).

27. Guillet R. The Humid Combustion to Protect Environment and to Save the Fuel: the Water Vapor Pump and Maisotsenko Cycles Examples. International Journal of Energy for a Clean Environment, 2011;12(2– 4):259–271.


Review

For citations:


Soroka B.S. WET BURNING – THE MODERN TREND IN ENVIRONMENTAL BENIGN FUEL COMBUSTION AND IN SOLUTION TO THE PROBLEM OF SUSTAINABLE DEVELOPMENT OF THE POWER GENERATION. Alternative Energy and Ecology (ISJAEE). 2018;(25-30):96-117. (In Russ.) https://doi.org/10.15518/isjaee.2018.25-30.096-117

Views: 1271


ISSN 1608-8298 (Print)