Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

LIFE-CYCLE PERFORMANCE OF HYDROGEN AS AN ENERGY MANAGEMENT SOLUTION IN HYDROPOWER PLANTS: A CASE STUDY IN CENTRAL ITALY

https://doi.org/10.15518/isjaee.2018.31-36.035-051

Abstract

The suitability of hydrogen as an energy management solution in a run-of-river hydropower plant inCentral Italyis evaluated from a life-cycle perspective. Hydrogen production at off-peak hours via electrolysis is considered, as well as potential hydrogen storage in metal hydrides followed by hydrogen use at peak hours for power generation using fuel cell technology. Hydropower generation and hydrogen production are identified as the subsystems contributing most to the nine evaluated impact categories (e.g., global warming, abiotic depletion and cumulative energy demand). The renewable hydrogen produced shows a more favourable life-cycle environmental and energy performance than conventional hydrogen generated via steam methane reforming. Furthermore, when enlarging the system with hydrogen use for power generation, the renewable electricity product shows a better life-cycle profile than conventional electricity for the Italian electrical grid. Overall, under life-cycle aspects, hydrogen is found to be a suitable energy solution in hydropower plants both as a hydrogen product itself (e.g., for transportation) and as a feedstock for subsequent power generation at peak hours.

About the Authors

A. Valente
Systems Analysis Unit, Instituto IMDEA Energı´a
Spain

Antonio Valente - M.Sc.; Researcher at the IMDEA Energy Institute of Madrid; Secretary/Treasurer of IAHE Hydrogen
Energy Systems Division

28935, Móstoles, tel.: +34 91 7371119



D. Iribarren
Systems Analysis Unit, Instituto IMDEA Energı´a
Spain

Diego Iribarren - Ph.D.; Researcher in the Systems Analysis Unit of IMDEA Energy (Spain); expert in IEA HIA Tasks 30 and 36; Chair of the Spanish Network for Life Cycle Assessment esLCA

28935, Móstoles, tel.: +34 91 7371119



J. Dufour
Systems Analysis Unit, Instituto IMDEA Energı´a; Department of Chemical and Energy Technology, ESCET Rey Juan Carlos University
Spain

Javier Dufour - Ph.D.; Full Professor at Rey Juan Carlos University; Research Professor and Head of the Systems Analysis Unit at IMDEA Energy Institute; Vice-chair of Cross Cutting Research Activities of Hydrogen Europe Research; Former Chair of the Spanish Life Cycle Network (esLCA); Operating Agent of Task 36 “Life Cycle Sustainability Assessment of Hydrogen Energy Systems”. Hydrogen Implementing Agreement of International Energy Agency. 01/01/15-31/12/17

28933, Móostoles

28935, Móstoles, tel.: +34 91 7371119



G. Spazzafumo
Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio
Italy

Giuseppe Spazzafumo - Ph.D.; Associate Professor at University of Cassino and Southern Lazio; Coordinator of HYPOTHESIS (Hydrogen Power Theoretical and Engineering Solutions International Symposium) Series; Member of the Board of Directors of IAHE (International Association for Hydrogen Energy); President of IAHE Hydrogen Energy Systems Division

Via G. Di Biasio 43, I-03043 Cassino, tel.: +39 0585 52761



References

1. British Petroleum. BP statistical review of world energy. 2014. Available on: www.bp.com/content/dam/bp/pdf/Energy-economics/statistical-review-2014/BP-statistical-review-ofworldenergy- 2014-full-report.pdf [accessed 02.03.15].

2. Intergovernmental Panel on Climate Change. Fifth Assessment Report. Available on: www.ipcc.ch/report/ar5 [accessed 02.03.15].

3. Zamfirescu C., Dincer I. Assessment of a new integrated solar energy system for hydrogen production. Sol. Energy, 2014;107:700–13.

4. Khalilnejad A., Riahy G.H. A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer. Energy Convers Manag., 2014;80:398–406.

5. Carr S., Premier G.C., Guwy A.J., Dinsdale R.M., Maddy J. Hydrogen storage and demand to increase wind power onto electricity distribution networks. Int. J. Hydrogen Energy, 2014;39:10195–207.

6. Ahmadi S., Rezaei Mirghaed M., Roshandel R. Performance of a standalone wind-hydrogen power system for regions with seasonal wind profile: a case study in Khaf region. Sustain. Energy Technol. Assess, 2014;7:265–78.

7. Mansilla C., Avril S., Imbach J., Le Duigou A. CO2-free hydrogen as a substitute to fossil fuels: what are the targets? prospective assessment of the hydrogen market attractiveness. Int. J. Hydrogen Energy, 2012;37:9451–8.

8. Contaldi M., Gracceva F., Mattucci A. Hydrogen perspectives in Italy: analysis of possible deployment scenarios. Int. J. Hydrogen Energy, 2008;33:1630–42.

9. Dincer I. Green methods for hydrogen production. Int. J. Hydrogen Energy, 2012;37:1954–71.

10. ISO 14040. Environmental management e life cycle assessment e principles and framework. Int Organ Stand 2006.

11. ISO 14044. Environmental management e life cycle assessment e requirements and guidelines. Int Organ Stand 2006.

12. Enel. Fonte Cupa Hydropower plant. Available on: http://www.enel.it/it-IT/impianti/mappa/dettaglio/fonte-cupa-fontana-liri/p/090027d98192f81d [accessed 02.03.15].

13. Dufour J., Serrano D.P., Gálvez J.L., González A., Soria E., Fierro J.L.G. Life cycle assessment of alternatives for hydrogen production from renewable and fossil sources. Int. J. Hydrogen Energy, 2012;37:1173–83.

14. Centro Funzionale Regione Lazio. Liri Ad Isola Del Liri LII_29. Available on: www.idrografico.roma.it/asp.net/schede/Stazioni_Misura_Portata/35.pdf [accessed 02.03.15].

15. Citrini D., Noseda G. Hydraulics [in Italian]. Milan: Ambrosiana; 1994.

16. Della Volpe R. Machines [in Italian]. Naples: Liguori Editore; 2002.

17. Cordova M.M., Finardi E.C., Ribas F.A.C., de Matos V.L., Scuzziato M.R. Performance evaluation and energy production optimization in the real-time operation of hydropower plants. Electr. Power Syst. Res., 2014;116:201–7.

18. Terna Rete Italia. Italian electrical grid: data. 2013. Available on: www.terna.it/default.aspx?tabidј380 [accessed 02.03.15].

19. Carmo M., Fritz D.L., Mergel J., Stolten D. A. comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy, 2013;38:4901–34.

20. Hydrogenics HySTAT™-60. Available on: www.hydrogenics.com/ hydrogen-productssolutions/industrial-hydrogengenerators- byelectrolysis/outdoor-installation/hystattrade- 60 [accessed 02.03.15].

21. Flury K., Frischknecht R. Life cycle inventories of hydroelectric power generation. Uster ESU-services 2012.

22. Dones R., Bauer C., Bolliger R., Burger B., Faist-Emmenegger M., Frischknecht R., et al. Life cycle inventories of energy systems: results for current systems in Switzerland and other UCTE countries, ecoinvent report No. 5. Dűbendorf: Swiss centre for life cycle inventories. 2007.

23. Enel. Environmental statement. Hydropower plants [in Italian]. 2013. Available on: www.enel.it/itIT/doc/azienda/ambiente/dichiarazioni_ambientali/20130624_da_emiliatoscana_2013.pdf [accessed 02.03.15].

24. ENEA. Climate archive: Climate profile of Italy – Lazio – Frosinone. Available on: clisun.casaccia.enea.it/Profili/_images/regionimappe/lazioprovin/fros.html [accessed 02.03.15].

25. Dragoni W, Valigi D. Contribution to the estimation of evaporation from liquid surfaces in Central Italy [in Italian]. Geol. Romana, 1994;30:151–8.

26. Maack M.H. Deliverable nº 8-5 RS1a e generation of the energy carrier hydrogen in context with electricity buffering generation through fuel cells. Reykjavik: Icelandic New Energy; 2008.

27. Susmozas A., Iribarren D., Dufour J. Life-cycle performance of indirect biomass gasification as a green alternative to steam methane reforming for hydrogen production. Int. J. Hydrogen Energy, 2013;38:9961–72.

28. Frischknecht R., Jungbluth N., Althaus H.J., Doka G., Heck T., Hellweg S., et al. Overview and Methodology, ecoinvent report No. 1. Dűbendorf Swiss Centre Life Cycle Invent, 2007.

29. Goedkoop M., Oele M., Leijting J., Ponsioen T., Meijer E. Introduction to LCA with SimaPro. Amersfoort PRé Consult 2013.

30. Guinée J.B., Gorrée M., Heijungs R., Huppes G., Kleijn R., de Koning A., et al. Life cycle assessment e an operational guide to the ISO standards. Leiden: Centre of Environmental Science; 2001.

31. Myhre G., Shindell D., Bréon F.M., Collins W., Fuglestvedt J., Huang J., et al. Anthropogenic and natural radiative forcing. In: Stocker T.F., Qin D., Plattner G.K., Tignor M., Allen S.K., Boschung J., et al., editors. Climate change 2013: the physical science basis e contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 659–740.

32. VDI. VDI guideline 4600: cumulative energy demand (KEA) e terms, definitions, methods of calculation. Dűsseld Ver Dtsch Ingenieure 2012.

33. Koroneos C., Dompros A., Roumbas G., Moussiopoulos N. Life cycle assessment of hydrogen fuel production processes. Int. J. Hydrogen Energy, 2004;29:1443–50.

34. Bhandari R., Trudewind C.A., Zapp P. Life cycle assessment of hydrogen production via electrolysis e a review. J. Clean. Prod., 2014;85:151–63.

35. Terna Rete Italia National and regional energy balances in 2013. Available on: www.terna.it/default/Home/SISTEMA_ELETTRICO/statistiche.aspx [accessed 02.03.15].

36. Chandra D., Reilly J.J., Chellappa R. Metal hydrides for vehicular applications: the state of the art. J. Min. Met. Mater. Soc., 2006;58:26–32.

37. Hubbard W.N., Rawlins P.L., Connick P.A., Stedwell R.E., O'Hare P.A.G. The standard enthalpy of formation of LaNi5 – the enthalpies of hydriding of LaNi5–xAlx. J. Chem. Thermodyn., 1983;15:785–98.

38. Delhomme B., Lanzini A., Ortigoza-Villalba G.A., Nachev S., de Rango P., Santarelli M., et al. Coupling and thermal integration of a solid oxide fuel cell with a magnesium hydride tank. Int. J. Hydrogen Energy, 2013;38:4740–7.

39. Cicconardi S.P., Jannelli E., Spazzafumo G. Hydrogen energy storage: hydrogen and oxygen storage subsystems. Int. J. Hydrogen Energy, 1997;22:897–902.

40. Miller H.I., Murray J., Laury E., Reinhardt J., Goudy A.J. The hydriding and dehydriding kinetics of FeTi and Fe0.9TiMn0.1. J. Alloy Compd., 1995;231:670–4.

41. Lototskyy M.V., Yartys V.A., Pollet B.G., Bowman R.C. Metal hydride hydrogen compressors: a review. Int. J. Hydrogen Energy, 2014;39:5818–51.

42. Ballard. Distributed generation – ClearGen® 1 MW. Available on: www. ballard.com/files/PDF/Distributed_Generation/CLEARgen_Spec_Sheet.pdf [accessed 02.03.15].

43. Bizon N. Improving the PEMFC energy efficiency by optimizing the fueling rates based on extremum seeking algorithm. Int. J. Hydrogen Energy, 2014;39:10641–54.

44. Venturelli L., Santangelo P.E., Tartarini P. Fuel cell systems and traditional technologies e part II: experimental study on dynamic behavior of PEMFC in stationary power generation. Appl. Therm. Eng,. 2009;29:3469–75.

45. Pérez L.C., Rajala T., Ihonen J., Koski P., Sousa J.M., Mendes A. Development of a methodology to optimize the air bleed in PEMFC systems operating with low quality hydrogen. Int. J. Hydrogen Energy, 2013;38:16286–99.

46. Yu J., Jiang Z., Hou M., Liang D., Xiao Y., Dou M., et al. Analysis of the behavior and degradation in proton exchange membrane fuel cells with a dead-ended anode. J. Power Sources, 2014;246:90–4.

47. Gomez A., Raj A., Sasmito A.P., Shamim T. Effect of operating parameters on the transient performance of a polymer electrolyte membrane fuel cell stack with a dead-end anode. Appl. Energy, 2014;130:692–701.

48. Álvarez G., Alcaide F., Cabot P.L., Lázaro M.J., Pastor E., Solla- Gull_on J. Electrochemical performance of low temperature PEMFC with surface tailored carbon nanofibers as catalyst support. Int. J. Hydrogen Energy, 2012;37:393–404.

49. Chen P., Zhu M. Recent progress in hydrogen storage. Mater. Today, 2008;11:36–43.

50. Asano K., Yamazaki Y., Iijima Y. Hydrogenation and dehydrogenation behavior of LaNi5–xCox (x = 0, 0.25, 2) alloys studied by pressure differential scanning calorimetry. Mater. Trans., 2002;43:1095–9.

51. An X.H., Gu Q.F., Zhang J.Y., Chen S.L., Yu X.B., Li Q. Experimental investigation and thermodynamic reassessment ofof La–Ni and LaNi5–H systems. Calphad., 2013;40:48–55.

52. Zhao Y.J., Freeman A.J. Accurate heat of formation for fully hydrided LaNi5 via the all-electron fullpotential linearized augmented plane wave approach. J. Appl. Phys., 2007:102. 033518/1–033518/5.

53. Mellouli S., Dhaou H., Askri F., Jemni A., Ben Nasrallah S. Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger. Int. J. Hydrogen Energy, 2009;34:9393–401.

54. Garraín D, Lechón Y. Exploratory environmental impact assessment of the manufacturing and disposal stages of a new PEM fuel cell. Int. J. Hydrogen Energy, 2014;39:1769–74.

55. Italian Regulatory Authority for Electricity, Gas and Water. Gross electricity production by source. www.autorita.energia.it/it/dati/eem6.htm [accessed 02.03.15].

56. Gutiérrez-Martín F., García-De María J.M., Baïri A., Laraqi N. Management strategies for surplus electricity loads using electrolytic hydrogen. Int. J. Hydrogen Energy, 2009;34:8468–75.

57. Martín-Gamboa M., Iribarren D., Dufour J. On the environmental suitability of high- and low-enthalpy geothermal systems. Geothermics, 2015;53:27–37.


Review

For citations:


Valente A., Iribarren D., Dufour J., Spazzafumo G. LIFE-CYCLE PERFORMANCE OF HYDROGEN AS AN ENERGY MANAGEMENT SOLUTION IN HYDROPOWER PLANTS: A CASE STUDY IN CENTRAL ITALY. Alternative Energy and Ecology (ISJAEE). 2018;(31-36):35-51. (In Russ.) https://doi.org/10.15518/isjaee.2018.31-36.035-051

Views: 811


ISSN 1608-8298 (Print)