Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search

THE POSSIBILITY OF ELECTROLYZER WITH A SOLID POLYMER ELECTROLYTE START AT LOW TEMPERATURES

https://doi.org/10.15518/isjaee.2015.12.003

Abstract

The paper deals with the research that covers the possibility of using ethanol in concentrations up to 40 vol. % as an anode depolarizer for the cell with solid polymer electrolyte (PEM) and in order to ensure its start at low temperatures. Platinum, iridium and a solid solution of Pt-Ru (1:1 at. %) were used as the anode catalyst, and Pt on Vulcan XC-72 and Pt-Ru were used as the cathode one. It is shown that in all cases by using water-ethanol solutions with concentrations of ethanol up to 40 vol. % the cell voltage generally increased due to the increase of membrane resistance and decrease of rate of the cathodic process of platinum catalyst passivation/poisoning by ethanol and its oxidation products. Some negative impact has a stronger swell of the membrane-electrode unit in a solution of ethanol, which leads to its partial destruction. The energy consumption for the production of hydrogen by electrolysis of alcoholic solutions is lower than by water electrolysis, though the economic feasibility of this process is doubtful. The research demonstrates the electrolysis cell can withstand the freezing at the temperatures in the range of –15 to –20oC. Moreover, the resistance of the membrane in water-ethanol solutions (about 40 vol. %) is not critical at these temperatures. The feed of water-ethanol solutions in the electrolytic cell allows one to start the electrolysis of water at these temperatures at a voltage of 2,0–2,2 V and currents of 0,07–0,13 A/cm2. This ensures the ‘cold start’ and subsequent self-heating of the electrolysis cell and further using deionized water.

About the Authors

V. N. Fateev
NRC “Kurchatov Institute”
Russian Federation
chemist, PhD, DSc (chemistry), professor, Deputy Head of KCPCT on scientific work of NRC “Kurchatov Institute”


E. K. Lyutikova
NRC “Kurchatov Institute”
Russian Federation
mechanical engineer, chief of laboratory of KCPCT of NRC “Kurchatov Institute”


V. V. Pimenov
NRC “Kurchatov Institute”
Russian Federation
technologist-engineer, technologist of KCPCT of NRC “Kurchatov Institute”


S. V. Akelkina
NRC “Kurchatov Institute”
Russian Federation
engineer-chemist-technologist, chief of laboratory of NRC “Kurchatov Institute”


S. E. Salnikov
NRC “Kurchatov Institute”
Russian Federation
technologist-engineer, technologist of KCPCT of  NRC “Kurchatov Institute”


W. Xing
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
China

PhD, DSc (сhemistry), Professor,  Director of Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences



References

1. Sasikumar G., Muthumeenal A., Pethaiah S.S., Nachiappan N., Balaji R. Aqueous methanol electrolysis using proton-conducting membrane for hydrogen pro-duction. International journal of hydrogen energy, 2008, vol 33, is. 21, pp. 5905–5910 (in Eng.).

2. Caravaca A., Sapountzi F.M., De Lucas-Consuegra A., Molina-Mora C., Dorado F., Valverde J.L. Electrochemical reforming of ethanol water solutions for pure H2 production in a PEM electrolysis cell. Inter-national journal of hydrogen energy, 2012, vol. 37, issue 12, pp. 9504–9513 (in Eng.).

3. Tuomi S., Santasalo-Aarnio A., Petri Kanninen P., Kallio T. Hydrogen production by methanolewater solution electrolysis with an alkaline membrane cell. Journal of Power Sources, 2013, vol. 229, pp. 32–35 (in Eng.).

4. Cloutier C.R., Wilkinson D.P. Electrolytic pro-duction of hydrogen from aqueous acidic methanol solu-tions, International journal of hydrogen energy, 2010, vol. 35, issue 9, pp. 3967–3984 (in Eng.).

5. Kadirov M.K. Issledovanie anodnogo okisleniâ ètanola v toplivnom èlemente metodom ÈPR. Struktura i dinamika molekulârnyh sistem, 2007, issue 1, pp. 444–449 (in Russ.).

6. Tarasevih М.R, Kuzov А.V. Toplivnie elementi praymogo okislenia spirtov. International Scientific Journal «Alʹternativnaâ ènergetika i èkologiâ» (ISJAEE), 2010, no. 7 (87), pp. 86–108 (in Russ.).

7. Eliott J.A., Hanna S., Eliott A.M.S., Cooley G.E. The swelling behaviour of perfluorinated ionomer membrane in ethanol/water mixtures. Polymer, 2001, vol. 42, pp. 2251–2253 (in Eng.).

8. Rivin D., Kendrick C.E., Gibson P.W., Schneider N.S. Solubility and transport behavior of water and alcohols in NafionTM. Polymer, 2001, vol. 42, pp. 623–35 (in Eng.).

9. Tarasevih М.R., Kuzov А.V., Pripadchev D.A., Baulin V.E. Development of catalysts and fuel cell with electrolyte proton conductive materials for the direct oxidation of ethanol. International Scientific Journal «Alʹternativnaâ ènergetika i èkologiâ» (ISJAEE), 2008, vol. 10, pp. 155–163 (in Russ.).

10. Kuzov А.V., Tarasevih М.R., Bogdanovskaya V.A. Catalysts for anodic oxidation of ethanol to ethanol-air fuel cell with polymer electrolyte proton conductive materials. Electrochemistry, 2010, vol. 46, no. 4, pp. 444–453 (in Eng.).

11. Kuzov A.V., Tarasevich M.R., Korchagin O.V. Anode catalysts for direct ethanol electrooxidation. 5th Baltic Conference on Electrochemistry, 30 April–5 May, 2008, Tartu, Estonia (in Eng.).

12. Baulin V.E., Bogdanovskaya V.A., Kuzov A.V., Pripadchev D.A., Tarasevih М.R., Erenburg M.R. Anodnye katalizatory dlâ nizkotemperaturnyh ètanolʹno-kislorodnyh toplivnyh èlementov [Anode catalysts for low-temperature ethanol-oxygen fuel cell]. II interna-tional symposium on hydrogen energy, 1–2 November, 2007, Moscow, Russia (in Russ.).

13. Grinberg V.A., Kulova A.M., Skundin A.M., Pasinskii A.A. Nanostrukturnye katodnye katalizatory dlâ prâmogo metanolʹnogo toplivnogo èlementa [Nanostructured cathode catalysts for direct methanol fuel cell]. Electrochemistry, 2007, vol. 43, no. 1, pp. 72–76 (in Russ.).

14. Mazin P.V., Kapustina M.R., Tarasevih М.R. Toplivnyj èlement s prâmym okisleniem ètanola s ani-onoobmennoj membranoj i ŝeločnym èlektrolitom [Fuel cell direct ethanol oxidation anion exchange membrane and an alkaline electrolyte]. Electrochemistry, 2011, vol. 47, no. 3, pp. 295–302 (in Russ.).

15. Frolova L.A., Dobrovolski Y.A., Bucun N.G. Èlektrokatalizatory na osnove platinirovannyh oksidov olova dlâ vodorodnyh i spirtovyh toplivnyh èlementov [Electrocatalysts based on platinized for hydrogen and alcohol fuel cells]. Electrochemistry, 2011, vol. 47, no. 6, pp. 745–756 (in Russ.).

16. Kurihara L.K., Chow G.M., Schoen P.E. Nano-crystalline metallic powders and films produced by the polyol method. Nanostructured Materials, 1995, vol.5, no.6, pp. 607–613 (in Eng.).

17. Xie J., Zhang N., Varadan V.K. Functionalized carbon nanotubes in platinum decoration. Smart Mater. Struct., 2006,15, pp. S5–S8 (in Eng.).

18. Fujimoto T., Mizukoshi Y., Nagata Y., Maeda Y., Oshima R. Sonolytical preparation of various types of metal nanoparticles in aqueous solution. Scripta mater., 2001, vol. 44, pp. 2183–2186 (in Eng.).

19. Akelkina S.V., Kulikova L.N., Lyutikova E.K., Porembsky V.I., Fateev V.N. Katalizator s nanora-zmernymi časticami na nositele i sposob ego izgotovleniâ. Patent 2324538 RF B01J 37/04 (the applicant and owner NRC “Kurchatov Institute” № 2006142295/04) (in Russ.).

20. Fedotov А.А., Grigoriev S.А., Dzhus` К., Fateev V.N. Sintez nanostrukturirovannyh èlektrokatalizatorov na osnove magnetronno-ionnogo raspyleniâ. Kinetika i kataliz, 2012, vol. 53, no. 6, pp. 803–809 (in Russ.).

21. Alekseeva О.К., Fateev V.N. Primenenie metoda ionnogo magnetronnogo raspyleniâ dlâ sinteza nanostrukturnyh èlektrokatalizatorov (review). Interna-tional Scientific Journal “Alʹternativnaâ ènergetika i èkologiâ” (ISJAEE), 2015, no. 7 (171), pp. 14–36 (in Russ.).

22. Grigoriev S.A., Fedotov A.A., Martemianov, S.A., Fateev V.N. Synthesis of nanostructural electrocatalytic materials on various carbon substrates by ion plasma sputtering of platinum metals. Russian J. of Electrochemistry, 2014, vol. 50, no. 7, pp. 638–646 (in Eng.).

23. Gluchov A.S., Fedotov A.A., Grigoriev S.A., Kuleshov N.V. Magnetronno-ionnoe raspylenie kak metod sinteza katalizatorov dlâ èlektrohimičeskih sistem s tverdopolimernym èlektrolitom. International Scientific Journal “Alʹternativnaâ ènergetika i èkologiâ” (ISJAEE), 2012, no. 4 (108), pp. 101–107 (in Russ.).

24. Fedotov A.A., Grigoriev S.A., Gluchov A.S., Dzhus` К., Fateev V.N. Sintez nanostrukturirovannyh èlektrokatalizatorov na osnove magnetronno-ionnogo raspyleniâ [Synthesis of nanostructured electrocatalysts based on magnetron-ion sputtering]. Kinetics and catal-ysis, 2012, vol.53, no. 6, pp. 753–758 (in Russ.).

25. Bryazkalo A.M., Goldenberg R.E., Grigoriev S.A., Pristavko Y. N., Fateev V.N. Ustrojstvo dlâ naneseniâ pokrytij na poroški [Device for coating pow-ders]. RU 2 344 902 C1 B22F 1/02 C23C 14/34 B02C 17/20. / 27.01.2009/ Bul. no 3 (in Russ.).

26. Fateev V.N., Archakov O.V., Lyutikova E.K., Kulikova L.N., Porembsky V.I. Èlektroliz vody v sistemah s tverdym polimernym èlektrolitom [Electrolysis of water in PEM]. Electrochemistry, 1993, vol. 29, no. 4, pp. 551–556 (in Russ.).

27. Grigoriev S.A., Porembsky V.I., Fateev V.N. Pure hydrogen production by PEM electrolysis for hydrogen energy. International journal of hydrogen energy, 2006, vol. 31, issue 2, pp. 171–175 (in Eng.).

28. Grigoriev S.A., Millet P., Fateev V.N. Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution in PEM water electrolysers. Journal of Power Sources, 2008, vol. 177, issue 2, pp. 281–285 (in Eng.).

29. Searle A.J.F., Tomas A. Hydroxyl free radical production in iron-cysteine solutions and protection by zinc. J. Inorg. Biochem., 1982, vol. 17, pp. 161–166 (in Eng.).

30. Sandy Thomas CE., An affordable hydrogen energy pathway. 15th annual national hydrogen associa-tion meeting. Los Angles, California: 2004 (in Eng.).

31. Podlovchenko B.I., Petrii O.A., Frumkin A.N., Hira Lal. The behaviour of a platinized-platinum electrode in solutions of alcohols containing more than one carbon atom, aldehydes and formic acid . J. Electroanal. Chem., 1965, vol. 11, pp. 12–25 (in Eng.).

32. Lamy C., Rousseau S., Belgsir E.M., Contanceau C., Leger J.-M. Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim. Acta, 2004, vol. 49, pp. 3901–3908 (in Eng.).

33. Vigier F., Contanceau C., Perrad A., Belgsir E.M., Lamy C. Development of Anode Catalysts for a Direct Ethanol Fuel Cell. J. Appl. Electrochem., 2004, vol. 34, pp. 439 (in Eng.).

34. Parsons R., VanderNoot T. The oxidation of small organic molecules: A survey of recent fuel cell related research. J. Electroanal. Chem., 1988, vol. 257, pp. 9–45 (in Eng.).

35. Lamy C., Lima A., LeRhun V., Delime F., Contanceau C., Leger J.-M. Recent advances in the de-velopment of direct alcohol fuel cells (DAFC). J. Power Sources, 2002, vol. 105, pp. 283–296 (in Eng.).

36. Tarasevih М.R., Kuzov А.V., Clyuev A.L., Ti-tova V.N. Anodnye katalizatory dlâ ètanolʹno-kislorodnogo toplivnogo èlementa s protonprovodâŝim polimernym èlektrolitom [Anode catalysts for ethanole-oxygen fuel cell with polymer electrolyte proton conduc-tive materials]. International Scientific Journal “Alʹternativnaâ ènergetika i èkologiâ” (ISJAEE), 2007, vol. 2, pp. 113–117 (in Russ.).

37. Tsivadze A.U., Tarasevih М.R., Kuzov А.V., Romanova I.A. Novye nanorazmernye katodnye èlektrokatalizatory, tolerantnye k ètanolu [New nanoscale cathode electrocatalysts, tolerant to ethanol]. Reports of Academy of Sciences, 2008, vol. 421, no 1, pp. 72–75 (in Russ.).

38. Guo Yonglang, Zheng Dingqin, Liu Huiyong, Friedrich A., Garche J. The effect of metal oxides as co-catalysts for the electro-oxidation of methanol on plati-num–ruthenium. J. New Mat. Electrocnem. System., 2006, vol. 9, pp. 33–39 (in Eng.).

39. Colmati F., Antolini E., Gonzales E. R. Ethanol Oxidation on Carbon Supported Pt-Sn Electrocatalysts Prepared by Reduction with Formic Acid. J. Electrochem. Soc., 2007, vol. 154, pp. 39–47 (in Eng.).


Review

For citations:


Fateev V.N., Lyutikova E.K., Pimenov V.V., Akelkina S.V., Salnikov S.E., Xing W. THE POSSIBILITY OF ELECTROLYZER WITH A SOLID POLYMER ELECTROLYTE START AT LOW TEMPERATURES. Alternative Energy and Ecology (ISJAEE). 2015;(12):28-39. (In Russ.) https://doi.org/10.15518/isjaee.2015.12.003

Views: 1526


ISSN 1608-8298 (Print)