Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

APPLICATION OF DYNAMIC LIGHT SCATTERING IN BIOMEDICINE AND ECOLOGY

https://doi.org/10.15518/isjaee.2019.01-03.080-103

Abstract

The review is devoted to the modern state of science in the field of light scattering techniques application in the biomedicine and ecology. The theoretical basis of dynamic and static light scattering and the results of modern works of their using for different aims are presented in the work. Since these methods are non-invasive and do not disturb the essential course of different processes, they are useful and irreplaceable for studying the biological samples. Application of the methods for studying of the hydrodynamic radii, molecular weights and distributions of light scattering on biomacromolecular particle sizes in biological liquids already led to the development of techniques of diagnostics of different socially-important deceases (cancer, cardiovascular deceases, and diabetes). The authors of diagnostics found that the ratio of the light intensity on the sizes of albumins and globulins, the mean hydrodynamic radius of protein aggregates and the second virial coefficient are the sensitive parameters to pathological processes development in the human body. The review also presents the results of the works devoted to the study of theinflu ence of the low doses of ions of heavy metals and radioactive radiation on different groups of the population by light scattering. The results showed, for example, that the people involved in the nuclear industry have metabolic disorders. Such works open the possibility of application of light scattering technique for sanogenetic control of the population health, which is relevant from the ecological point of view of environmentally unfriendly territories and industries. The study of the structure and properties of the polymeric and biological gels and effects of different factors on them (including nanoparticles) is the perspective field of light scattering application. The works and their results presented in the review show the broad application of light scattering technique for different biological and ecological aims.

About the Authors

M. N. Kirichenko
Lebedev Physical Institute of RAS
Russian Federation

Ph.D. in Physics and Mathematics, Researcher

53 Leninsky Av., Moscow, 119991, Russia
tel.: +7 (499) 135 78 90



L. L. Chaikov
Lebedev Physical Institute of RAS
Russian Federation

Ph.D. in Physics and Mathematics, Leading Researcher,

53 Leninsky Av., Moscow, 119991, Russia
tel.: +7 (499) 135 78 90



M. A. Kazaryan
Lebedev Physical Institute of RAS
Russian Federation

D.Sc. in Physics and Mathematics, Leading Researcher

53 Leninsky Av., Moscow, 119991, Russia
tel.: +7 (499) 135 78 90



N. A. Bulychev
Lebedev Physical Institute of RAS Moscow Aviation Institute
Russian Federation

D.Sc. in Chemistry, Chief Researcher

53 Leninsky Av., Moscow, 119991, Russia
tel.: +7 (499) 135 78 90

4 Volokolamskoe drive, Moscow, 125993, Russia
tel.: +7(499)135 78 90



References

1. [1] Pecora R. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics. New York: Wiley, 1976.

2. [2] Pecora R. Dynamic light scattering: Applications of Photon Correlation spectroscopy. New York and London: Plenum Press, 1985.

3. [3] Van der Pol E., Hoekstra A., Sturk A., Otto C., Leeuwen T.G. van, Nieuwland R. Optical and nonoptical methods for detection and characterization of microparticles and exosomes. Journal of thrombosis and haemostasis: JTH, 2010;8(12):2596–607.

4. [4] Petrova G.P., Boiko A. V., Fedorova K. V., Sergeeva I.A., Sokol N. V., Tichonova T.N.Optical properties of solutions consisting of albumin and γ-globulin molecules in different ratio modeling blood serum. Laser Physics, 2009;19(6):1303–1307.

5. [5] Arzenšek D, Podgornik R., Kuzman D. Dynamic light scattering and application to proteins in solutions. Slovenia, University of Ljubljana, 2010.

6. [6] Some D., Kenrick S. Characterization of Protein-Protein Interactions via Static and Dynamic Light Scattering. In: Protein Interactions, InTech, 2012.

7. [7] Atmeh R., Arafa I., Al-Khateeb M. Albumin aggregates: hydrodynamic shape and physico-chemical properties. Jordan Journal of Chemistry, 2007;2(2):169–182.

8. [8] Roberts C.J. Non-Native Protein Aggregation Kinetics. Biotechnology and Bioengineering, 2007;98(5):927–938.

9. [9] Burchard W. Static and dynamic light scattering from branched polymers and biopolymers. Advances in Polymer Science, 1983;48(1):124.

10. [10] Zanini F. Static and Dynamic Light Scattering from Aqueous Solutions of Bovine Serum Albumin and Salts. Thesis, Trento, 2010.

11. [11] Thibault F., Langowski J., Leberman R. Optimizing protein crystallization by aggregate size distribution analysis using dynamic light scattering. Journal of Crystal Growth, 1992;122(1–4):50–59.

12. [12] Ahrer K., Buchacher A., Iberer G., Josic D., Jungbauer A.Analysis of aggregates of human immunoglobulin G using size-exclusion chromatography, static and dynamic light scattering. Journal of chromatography A, 2003;1009(1–2):89–96.

13. [13] Muler M., Burchard W. Quasi-elastic light scattering from fibrinogen and fibrin intermediate structures. Int. J. Biol.Macromol, 1981;3:71–76.

14. [14] Ferri F., Greco M., Arcvito G., De Spirito M., Rocco M. Structure of fibrin gels studied by elastic light scattering techniques: dependence of fractal dimension, gel crossover length, fiber diameter, and fiber density on monomer concentration. Physical review. E, Statistical, nonlinear, and soft matter physics, 2002;66(1):13.

15. [15] Kita R., Takahashi A., Kaibara M. Formation of Fibrin Gel in Fibrinogen – Thrombin System: Static and Dynamic Light Scattering Study. Biomacromolecules, 2002;3:1013–1020.

16. [16] Kubota K., Kogure H., Masuda Y., Toyama Y., Kita R., Takahashi A., Kaibara M. Gelation dynamics and gel structure of fibrinogen. Colloids and Surfaces B: Biointerfaces, 2004;38(3–4):103–109 (in Russ.).

17. [17] Petrova G.P., Petrusevich Yu.M., Ten D.I. Formation Of Dipole Complexes In Protein Solutions With Low Concentrations Of Heavy Metal Ions: Diagnostics By The Method Of Laser Radiation Scattering (Obrazovanie dipol'nykh kompleksov v rastvorakh belkov s maloi kontsentratsiei ionov tyazhelykh metallov: diagnostika metodom lazernogo svetorasseyaniya), Quantum Electronics, 2002;32(10):897–901 (in Russ.).

18. [18] Тен Д.И. The processes of aggregation of macromolecules of proteins in aqueous solutions containing heavy metal ions (Protsessy agregatsii makromolekul belkov v vodnykh rastvorakh , soderzhashchikh iony tyazhelykh metallov). Ph.D. Thesis, 2003.

19. [19] Luik A.I., Naboka Y.N., Mogilevich S.E., Hushcha T.O., Mischenko N.I. Study of human serum albumin structure by dynamic light scattering: two types of reactions under different pH and interaction with physiologically active compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1998;54(10):1503–1507.

20. [20] Aichmayer B., Margolis H.C., Sigel R., Yamakoshi Y., Simmer J.P., Fratzl P.The onset of amelogenin nanosphere aggregation studied by smallangle X-ray scattering and dynamic light scattering. Journal of Structural Biology, 2005;151(3):239–249.

21. [21] Beliciu C.M., Moraru C.I. Effect of solvent and temperature on the size distribution of casein micelles measured by dynamic light scattering. Journal of Dairy Science, 2009;92(5):1829–1839.

22. [22] Calmettes P., Cser L., Rajnavölgyi E. Temperature and pH dependence of immunoglobulin G conformation. Archives of biochemistry and biophysics, 1991:291(2):277–83.

23. [23] Sharma M., Luthra-Guptasarma M. Degradation of proteins upon storage at near-neutral pH: indications of a proteolytic/gelatinolytic activity associated with aggregates. Biochimica et biophysica acta, 2009;1790(10):1282–94.

24. [24] Petrusevich Y.M., Petrova G.P. The method of light scattering measurement in tumor diagnostics. Proceedings of SPIE, 1996;2728:2–9.

25. [25] Alekseev S.G., Ivanov A. V., Sviridov S. V., Petrova G.P., Petrusevich Y.M., Boiko A. V., Ten D.I. Multiparametrical Testing of Blood Proteins Solutions with Diagnostic Purpose. Proceedings of SPIE, 2005;5973:597301-597301–10.

26. [26] Papok I.M., Petrova G.P., Anenkova K.A., Papish E.A. Using the dynamic light-scattering method for the analysis of a blood-serum model solution. Moscow University Physics Bulletin, 2012;67(5);452–456.

27. [27] Koval'chuk Yu.P., Noskin L.A., Landa S.B., Bazhora Yu.I., Polyakov A.E., Khizhnyak E.V. Express diagnostics of the severity of urgent conditions according to homeostasis assessment by laser correlation spectroscopy,(Ekspress diagnostika tyazhesti techeniya urgentnykh sostoyanii po otsenke gomeostaza metodom lazernoi korrelyatsionnoi spektroskopii), Klinikolaboratornyi konsilium, 2005;7: 21–23 (in Russ.).

28. [28] Zdraevskaya O.N., Dyuk V.A., Landa S.B., Emmanuel' V.L., Novik V.I. Diagnostic significance of the method of laser correlation spectroscopy in inflammatory and neoplastic lung diseases, (Diagnosticheskaya znachimost' metoda lazernoi korrelyatsionnoi spektroskopii pri vospalitel'nykh i opukholevykh zabolevaniyakh legkikh). Klinicheskaya laboratornaya diagnostika, 2006;5:21–24 (in Russ.).

29. [29] Vlasova I.M., Dolmatova E. V., Koshelev V.B., Saletsky A.M. Investigation of ischemia damaging action on blood serum structure by laser spectroscopy methods. Laser Physics Letters, 2004;1(8):417–420.

30. [30] Karganov M.Yu., Kovaleva O.I., Khlebnikova N.N., Dmitrieva O.S., Saenko S.A., Dovgusha L.V., Landa S.B. Polysistemic assessment of the state of sanogenesis in workers employed in nuclear fuel plants. The analysis of metabolism regulation (Polisistemnaya otsenka sostoyaniya sanogeneza rabotnikov predpriyatiya yaderno-toplivnogo tsikla. Analiz regulyatsii obmennykh protsessov). Radiatsionnaya biologiya. Radioekologiya, 2004;44(3):251–261 (in Russ.).

31. [31] Pelishchuk V.K., Radilov A.S., Pirieva T.G., Landa S.B., Noskin L.A., Kiselev M.F. Using the method of laser correlation spectroscopy for mass surveys of the population with an increased risk of exposure to xenobiotics (working in the chemical industry and living in ecologically unfavorable areas), in order to identify in order to identify early and prenosologicheskie signs of intoxication (Ispol'zovanie metoda Lazernoj korrelyacionnoj spektroskopii pri massovyh obsledovaniyah naseleniya s povyshennym riskom vozdejstviya ksenobiotikov (rabotayushchih v himicheskoj promyshlennosti i prozhivayushchih v ehkologicheski neblagopriyatnyh rajonah), s cel'yu vyyavleniya s cel'yu vyyavleniya rannih i donozologicheskih priznakov intoksikacii). Metodicheskie rekomendacii. Reg. N 32-023.22, Moscow, 2001, 31 p. (in Russ.).

32. [32] Kiselev M.F., Dovgusha V.V., Dovgusha L.V., Landa S.B., Pivovarov V.V., Komarov G.D., Karganov M.Yu., Noskin V.A., Noskin L.A. Identification of the nature of exchange shifts in persons of different professions in contact with III in the conditions of the Far North (Identifikatsiya kharaktera obmennykh sdvigov u lits raznykh professii, kontaktiruyushchikh s III v usloviyakh krainego severa). Meditsina ekstremal'nykh situatsii, 2001;8(1):5–14 (in Russ.).

33. [33] Dobrovolskaia M.A., Patri A.K., Zheng J., Clogston J.D., Ayub N., Aggarwal P., Neun B.W., Hall J.B., McNeil S.E. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine: nanotechnology, biology, and medicine, 2009;5(2):106–17.

34. [34]. Kirichenko M.N., Masalov A. V., Chaikov L.L., Zaritsky A.R.Relation Between Particle Sizes and Concentration in Undiluted and Diluted Blood Plasma According to Light Scattering Data. Bulletin of the Lebedev Physics Institute, 2015;42(2):33–36.

35. [35] Kirichenko M.N., Krivokhiza S. V, Chaikov L.L., Bulychev N.A. The influence of the sequence of nanoparticles injection to solution on the rate of fibrinogen-thrombin reaction. Journal of Physics: Conference Series, 2017;784:012025.

36. [36] Fabelinskii I.L.Molecular Light scattering (Molekulyarnoe rasseyanie sveta). Moscow: Nauka

37. Publ., 1965, 511 p. (in Russ.).

38. [37] Smoluchowski M. Molekular-kinetische Theorie der Opaleszenz von Gasen im kritischen Zustande, sowie einiger verwandter Erscheinungen. Annalen der Physik, 1908;25:205–226.

39. [38] Smoluchowski M. Von Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Annalen der Physik, 1906;326(14):756–780.

40. [39] Einstein A. Zur Theorie der Brownschen Bewegung. Annalen der Physik, 1906;324(2):371–381.

41. [40] Einstein A. Theorie der Opeleszenz von homogenen Flussigkeiten und Flussikeitsgemischen in der Nähe des kritischen Zustandes. Annalen der Physik, 1910;33(33):1275.

42. [41] Kammins G., Paik E. Spectroscopy of optical mixing and correlation of photons (Spektroskopiya opticheskogo smesheniya i korrelyatsiya fotonov), Moscow: Mir Publ., 1978; 584 p. (in Russ.).

43. [42] Palberg T., Holger R., Koller T., Medebach M., Gerhard N. Super-heterodyne light scattering on interacting colloidal suspensions: theory and experiment. Europhys. Lett. 2004;66(291):1-16.

44. [43] Gorelik G.S. On the possibility of low-inertia photometry and demodulation analysis of light (O vozmozhnosti maloinertsionnogo fotometrirovaniya i demodulyatsionnogo analiza sveta), DAN SSSR, 1947;57(1):45–47 (in Russ.).

45. [44] Forrester A.T., Gumundsen R.A. Photoelectric mixing of incoherent light. Physical Review, 1995;90(6):1961–1700.

46. [45] Clark N.A., Lunachek J.H., Benedek G.B. A study of Brownian Motion Using Light Scattering. American Journal of Physics, 1970;38(5):575–585.

47. [46] Pecora R. Doppler Shifts in Light Scattering from Pure Liquids and Polymer Solutions. The Journal of Chemical Physics, 1964;40(6):1604.

48. [47] Brillouin L. Diffusion de la lumiere par un corps transparent homogene. C. R. Seances Acad. Sci. 1914;158(1331):34.

49. [48] Brillouin L. Diffusion de la lumiere et des rayons X par un corps transparent: Influence de l’agitation thermique. Ann. Phys.,1922;17(88):122.

50. [49] Fabelinskii I.L., Motulevich G.P. On an optical method of controlling the nature of the acoustic field (Ob odnom opticheskom sposobe kontrolya kharaktera akusticheskogo polya). Doklady Akademii nauk SSSR. 1951;81(5):787–790.

51. [50] Motulevich G.P., Fabelinskii I.L. Molecular Light Scattering in Liquids (Molekulyarnoe rasseyanie sveta v zhidkostyakh). Doklady Akademii nauk SSSR, 1952;83(2):203–206 (in Russ.).

52. [51] Koppel D.E. Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants. The Journal of Chemical Physics, 1972;57(11):4814.

53. [52] Frisken B.J. Reviziting the method of cumulants for the analysis of dynamic light-scattering data. Applied optics, 2001;40(24):4087–4091.

54. [53] Provencher S.W. CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Computer Physics Communications, 1982:27(3):229–242.

55. [54] Martin J., Wilcoxon J. Critical dynamics of the sol-gel transition. Physical review letters, 1988;61(3):373–376.

56. [55] Scatchard G.J., Batchelder A.C., Brown A. Osmotic equilibrium in solution of serum albumin and sodium chloride. J. Am. Chem. Soc. 1946;68:2315–2323.

57. [56] Scatchard G.J. The attraction of protein for small molecules and ions. Ann. N.Y. Acad. Sci. 1949; 51:2315.

58. [57] Petrova G.P., Petrusevich Yu.M., Alekseev S.G., Ivanov A.V. Rayleigh scattering method in the diagnosis of cancer (Metod releevskogo rasseyaniya v diagnostike onkologicheskikh zabolevanii). Meditsinskaya fizika, Sbornik nauchnyh trudov. – Moscow, fiz. fak. MGU, 2002,156–167.

59. [58] Chaikov L.L., Kirichenko M.N., Krivokhizha S. V, Zaritskiy A.R. Dynamics of statistically confident particle sizes and concentrations in blood plasma obtained by the dynamic light scattering method. Journal of biomedical optics, 2015;20(5):57003.

60. [59] Ivanov Y.V., Karimov A.R., Pyatnitsky L.N., Seryakov A.P., Shcheglov V.A. Biochemical Properties of Plasma. Journal of Russian Laser Research, 2005:26(5):363–372.

61. [60] Zheng X.-H., Cui C., Zhou X.-X., Zeng Y.-X., Jia W.-H. Centrifugation: an important pre- analytic procedure that influences plasma microRNA quantification during blood processing. Chinese journal of cancer, 2013;32(12):667–72.

62. [61] Akleev A. V., Romanskaya Yu. Yu., Kiselev M. F., Vazhenin A. V. Laser-correlation spectroscopy for detection of tumor processes and assessment of anti-cancer treatment effectiveness (Ispol'zovanie metoda lazernokorrelyacionnoj spektroskopii dlya obnaruzheniya opuholevyh processov i ocenki ehffektivnosti ih lecheniya). Rossijskij Bioterapevticheskij Zhurnal, 2005;4(4):102–108 (in Russ.).

63. [62] Shmidt P., Tevs G. Human Physiology (Fiziologiya cheloveka). Moscow: Mir Publ., 2005.

64. [63] Zhou M., Lucas D. A, Chan K.C., Issaq H.J., Petricoin E.F., Liotta L. A, Veenstra T.D., Conrads T.P. An investigation into the human serum “interactome”. Electrophoresis, 2004;25(9):1289–1298.

65. [64] Chicea D.A.N., Chicea R., Chicea L.M. HSA Particle size characterization by AFM. Romanian Reports in Physics, 2013;65(1):178–185.

66. [65] Velev O.D., Kaler E.W., Lenhoff A.M. Protein interactions in solution characterized by light and neutron scattering: Comparison of lysozyme and chymotrypsinogen. Biophysical Journal, 1998;75(6):2682–2697.

67. [66] Kiselev M.A. Gryzunov I.A., Dobretsov G.E., Komarova M.N. The Size of a human serum albumin molecule in solution. Biofizika, 2000;46(3):423–427.

68. [67] Hushcha T.O., Luik A.I., Naboka Y.N. Conformation changes of albumin in its interaction with physiologically active compounds as studied by quasi-elastic light scattering spectroscopy and ultrasonic method. Talanta, 2000;53(1):29–34.

69. [68] Marri R., Grenner D., Meies P., Roduell V. Harper’s Biochemistry (Biokhimiya cheloveka) Moscow: Mir Publ., 2003.

70. [69] Levtov V.A., Reriger S.A., Shadrina N.Kh. Blood rheology (Reologiya krovi). Moscow: Meditsina Publ., 1982, 270 p. (in Russ.).

71. [70] Karganov M., Alchinova I., Arkhipova E., Skalny A.V. Laser Correlation Spectroscopy: Nutritional, Ecological and Toxic Aspects. In: Biophysics.A.N. Misra ed. InTech, 2012 (in Russ.).

72. [71] Mosolov V.V. Proteolytic enzymes (Proteoliticheskie fermenty). Moscow: Nauka Publ., 1971, p. 1-404.

73. [72] Wasilewska M., Adamczyk Z., Jachimska B. Structure of fibrinogen in electrolyte solutions derived from dynamic light scattering (DLS) and viscosity measurements. Langmuir: the ACS journal of surfaces and colloids, 2009;25(6):3698–704.

74. [73] Walsh P.N., Ahmad S.S. Proteases in blood clotting. Essays in biochemistry, 2002;38:95–111.

75. [74] Lecompte T., Toussaint-Hacquard M., Devignes J. Anticoagulants drugs direct trombin inhibitors. Annales francaises d’anesthesie et de reanimation, 2009;28:S3–S7.

76. [75] Yi J., Liu Z., Craft D., Mullan P.O., Ju G., Gelfand C.A. Intrinsic Peptidase Activity Causes a Sequential Multi-Step Reaction (SMSR) in Digestion of Human Plasma Peptides. Journal of Proteome Research, 2008;7(12):5112–5118.

77. [76]. Yi J., Kim C., Gelfand C.A. Inhibition of Intrinsic Proteolytic Activities Moderates Preanalytical Variability and Instability of Human Plasma research articles. Journal of Proteome Research, 2007;6(5):1768–1781.

78. [77] Kirichenko M.N., Bulychev N.A., Chaikov L.L., Kazaryan M.A., Masalov A. V Effect of iron oxide nanoparticles on the blood coagulation according to light scattering data. Proceedings of SPIE, 2018;10614(April):106142C–1–6.

79. [78] Bulychev N.A., N.A., Kazaryan M.A., Zakharyan A.R., Bodryshev V. V, Kirichenko M.N. Study of physical properties of metal oxide nanoparticles obtained in acoustoplasma discharge. Proceedings of SPIE, 2018;10614(April):1061412-1–6.

80. [79] Kirichenko M.N., Chaikov L.L., Krivokhizha S. V, Bulychev N.A., Kazaryan M.A., Zaritsky A.R. Study of the Interaction between Iron Oxide Nanoparticles, Produced in Acoustoplasma Discharge with Cavitation, and Blood Plasma Fibrinogen by Light Scattering Techniques. Atmospheric and Oceanic Optics, 2018;31(4):381–385.

81. [80] Bychkova A.V., Sorokina O.N., Kovarskii A.L., Leonova V.B., Rozenfel'd M.A. Interaction between blood plasma proteins and magnetite nanoparticles (Vzaimodeistvie belkov plazmy krovi s nanochastitsami magnetite). Colloid Journal, 2010;72(5):694–700.

82. [81] Weiss W.F., Young T.M., Roberts C.J. Principles, Approaches, and Challenges for Predicting Protein Aggregation Rates and Shelf Life. Journal of pharmaceutical sciences, 2009;98(4):1246–1277.

83. [82]. Panyukov Y., Yudin I., Drachev V., Dobrov E., Kurganov B. The study of amorphous aggregation of tobacco mosaic virus coat protein by dynamic light scattering. Biophysical chemistry, 2007;127(1–2):9–18.

84. [83] Shiraki K., Fujiwara S., Imanaka T., Takagi M. Biophysical effect of amino acids on the prevention of protein aggregation. Journal of biochemistry, 2002;132(4):591–5.

85. [84] Schüler J., Frank J., Saenger W., Georgalis Y. Thermally induced aggregation of human transferrin receptor studied by light-scattering techniques. Biophysical journal, 1999;77(2):1117–1125.

86. [85] Bettelheim F.A., Ansari R., Cheng Q.F., Zigler J.S. The mode of chaperoning of dithiothreitol-denatured alphalactalbumin by alpha-crystallin. Biochemical and biophysical research communications, 1999;261(2):292–7.

87. [86] Militello V., Casarino C., Emanuele A., Giostra A., Pullara F., Leone M. Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophysical chemistry, 2004;107(2):175–87.

88. [87] Reddy K R.C., Lilie H., Rudolph R., Lange C. L-Arginine increases the solubility of unfolded species of hen egg white lysozyme. Protein science: a publication of the Protein Society, 2005;14(4):929–35.

89. [88] Arakawa T., Tsumoto K. The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation. Biochemical and biophysical research communications, 2003;304(1) :148–52.

90. [89] Artemova N.V., Bumagina Z.M., Stein-Margolina V.A., Gurvits B.Y. Acceleration of protein aggregation by amphiphilic peptides: Transformation of supramolecular structure of the aggregates. Biotechnology Progress, 2011;27(2):359–368.

91. [90] Artemova N.V., Bumagina Z.M., Kasakov A.S., Shubin V.V., Gurvits B.Y. Opioid peptides derived from food proteins suppress aggregation and promote reactivation of partly unfolded stressed proteins. Peptides, 2010;31:332–338.


Review

For citations:


Kirichenko M.N., Chaikov L.L., Kazaryan M.A., Bulychev N.A. APPLICATION OF DYNAMIC LIGHT SCATTERING IN BIOMEDICINE AND ECOLOGY. Alternative Energy and Ecology (ISJAEE). 2019;(01-03):80-103. (In Russ.) https://doi.org/10.15518/isjaee.2019.01-03.080-103

Views: 838


ISSN 1608-8298 (Print)