Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Experimental Studies of Process of Hydrogen Synthesis in Plasma Discharge in a Liquid-Phase Stream

https://doi.org/10.15518/isjaee.2019.04-06.046-050

Abstract

In this work, experimental studies of the process of obtaining hydrogen in a plasma discharge initiated in a liquid stream of different chemical composition were carried out. A two-phase flow was created when a liquid medium under high pressure passed through a hydrodynamic irradiator. A supersonic two-phase vapor-liquid flow under reduced pressure is formed in the fluid due to the pressure drop and decrease in the enthalpy of the flow. The plasma discharge was initiated by an external power source, which creates an electric field inside the reaction chamber. Several shapes and sizes of reaction chambers with different electrode arrangements were tested.

Pure water as well as alcohols, esters, and their mixtures with water were used as starting liquids. As a result of experimental studies, it was shown that a low-temperature plasma initiated under the conditions of a flow of a liquid-phase medium in the discharge gap between the electrodes can effectively decompose hydrogen-containing molecules of organic compounds in a liquid to form gaseous products with a significant proportion of hydrogen. It is shown that the highest efficiency of the process is when using mixtures of alcohols and water as a raw material. This opens the possibility of using this process in the processing of crude ethanol and other products of the fermentation of cheap plant materials. The decomposition of organic compounds in plasma also produces insignificant amounts of carbon nanoparticles and oxide nanoparticles of discharge electrode materials.

About the Author

N. A. Bulychev
Lebedev Physical Institute of RAS; Moscow Aviation Institute (National Research University)
Russian Federation

Nikolay Bulychev - D.Sc. in Chemistry, Chief Researcher, P.N. Lebedev Physics Institute; Professor at MAI, h-index 12.

53 Leninsky Av., Moscow, 119991, tel.: +7(499)132-62-47 2; 4 Volokolamskoe drive, Moscow, 125993, tel.: +7(499)135 78 90



References

1. Bulychev N.A., Kazaryan M.A., Gridneva E.S., Murav’ev E.N., Solinov V.F., Koshelev K.K., Kosheleva O. K., Sachkov V.I. Chen S.G.Plasma discharge with surround glow in the liquid phase under the impact of ultrasound. Bull. Lebedev Phys. Inst., 2012;39(7):214-220.

2. Klassen N., Krivko O., Kedrov V.V., Shmurak S.Z., Kiselev A.P., Shmyt’ko I.M., Kudrenko E.A., Shekhtman A.A., Bazhenov A.V., Fursova T.N., Abramov V.O., Bulychev N.A., Kisterev E.V.Laser and electric arc synthesis of nanocrystalline scintillators. IEEE Trans. Nucl. Sci, 2010;57(3):1377-1381.

3. Bulychev N.A., Kazaryan M.A., Chaikov L.L., Burkhanov I.S., Krasovskii V.I. Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 1. Method for producing particles. Bull. Lebedev Phys. Inst., 2014;41(9):264-268.

4. Burkhanov I.S., Chaikov L.L., Bulychev N.A., Kazaryan M.A., Krasovskii V.I. Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 2. Sizes and stability. Dynamic light scattering study. Bulletin of the Lebedev Physics Institute, 2014; 41(10):297-304.

5. Ivanov A.V., Nikiforov V.N., Shevchenko S.V., Timoshenko V.Yu., Pryadun V.V., Bulychev N.A., Bychenko A.B., Kazaryan M.A. Properties of metal oxide nanoparticles prepared by plasma discharge in water with ultrasonic cavitation. Int. J. Nanotechnol., 2017;14(7-8):618-626.

6. Bulychev N.A., Kazaryan M.A., Averyushkin A.S., Chernov A.A., Gusev A.L. Hydrogen Production by Low-Temperature Plasma Decomposition of Liquids. International Journal of Hydrogen Energy, 2017;42:20934-20938.

7. Bulychev N.A., Kazaryan M.A., Ethiraj A., Chaikov L.L. Plasma Discharge in Liquid Phase Media under Ultrasonic Cavitation as a Technique for Synthesizing Gaseous Hydrogen. Bulletin of the Lebedev Physical Institute, 2018;45(9):263-266.

8. Bulychev N.A. Obtaining of Hydrogen in Acoustoplasma Discharge in a Liquid-Phase Stream (Polucheniye vodoroda v akustoplazmennom razryade v potoke zhidkofaznoi sredy). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2019;1-3:42-48 (in Russ.).

9. Formalev V.F., Kolesnik S.A. A methodology for solving inverse coefficient problems of determining nonlinear thermophysical characteristics of anisotropic bodies. High Temperature, 2013;51(6):795-803.

10. Formalev V.F., Kolesnik S.A., Chipashvili A.A. An analytical investigation of heat and mass transfer under conditions of film cooling of bodies. High Temperature, 2006;44(1):108-114.

11. Formalev V.F., Kolesnik S.A. Analytical investigation of the heat condition of anisotropic plate in the existence of heat exchange on free borders (Analiticheskoye issledovaniye teplovogo sostoyaniya anizotropnoy plastiny pri nalichii teploobmena na svobodnykh granitsakh). Matematicheskoye modelirovaniye, 2003;15(6):107-110 (in Russ.).

12. Kolesnik S.A. A method for the identification of nonlinear components of the thermal conductivity tensor for anisotropic materials. Mathematical Models and Computer Simulations, 2014;6(5):480-489.

13. Formalev V.F., Kolesnik S.A. Methods, algorithms and software for determining the thermal state of cooled microprocket engines (Metodika, algoritm i programmnyy kompleks po opredeleniyu teplovogo sostoyaniya okhlazhdayemykh mikroraketnykh dvigateley). Trudy MAI 2014; (78) (in Russ.).

14. Ioni Yu.V., Tkachev S.V., Bulychev N.A., Gubin S.P. Preparation of Finely Dispersed Nanographite. Inorganic Materials, 2011;47(6):597-602.

15. Bulychev N.A., Kazaryan M.A., Nikoforov V.N., Shevchenko S.N., Yakunin V.G., Timoshenko V.Yu., Bychenko A.B., Sredin V.G. Peculiarities of Metal Oxide Nanoparticles Obtained in Acoustoplasma Discharge. J. Tech. Phys. Lett., 2016;42(9):105-110.

16. Bulychev N.A., Kuznetsova E.L., Bodryshev V.V., Rabinskiy L.N. Nanotechnological Aspects of Temperature-Dependent Decomposition of Polymer Solutions. Nanoscience and Technology. An International Journal, 2018;9(2):91-97.

17. Nikiforov V.N., Bulychev N.A., Rzhevskii V.V. Elastic properties of HTSC ceramics. Bulletin of the Lebedev Physical Institute, 2016;43(2):74-79.

18. Ganiev R.F., Bulychev N.A., Fomin V.N., Arutyunov I.A., Eisenbach C.D., Zubov V.P., Malyukova E.B. Effect of mechanical activation on surface modification in aqueous pigment disperse systems. Doklady Chemistry, 2006;407:54-56.

19. Bulychev N.A., Kisterev E.V., Arutunov I.A., Zubov V.P. Ultrasonic Treatment Assisted Surface Modification of Inorganic and Organic Pigments in Aqueous Dispersions. Journal of the Balkan Tribological Association, 2008;1(14):30-39.

20. Bulychev N., Dervaux B., Dirnberger K., Zubov V., Du Prez F.E., Eisenbach C.D. Structure of Adsorption Layers of Amphiphilic Copolymers on Inorganic or Organic Particle Surfaces. Macromol. Chem. Phys., 2010;9(211):971-977.

21. Rudnev A.V., Vanifatova N.G., Dzherayan T.G., Lazareva E.V., Bulychev N.A. Study of stability and dispersion composition of calcium hydroxyapatite in aqueous suspensions by capillary zone electrophoresis. Russian Journal of Analytical Chemistry, 2013;68(8):700.

22. Kirilina Yu.O., Bakeeva I.V., Bulychev N.A., Zubov V.P. Organic-inorganic hybrid hydrogels based on linear poly(N-vinylpyrrolidone) and products of hydrolytic polycondensation of tetramethoxysilane. Polymer Science Series B, 2009;51(3-4):135.

23. Bulychev N.A., Kirichenko M.N. Kazaryan M.A. Obtaining of Hydrogen in Acoustoplasma Discharge from Direct Water-Hydrocarbon Emulsions (Polucheniye vodoroda v akustoplazmennom razryade iz pryamykh vodno-uglevodorodnykh emul'siy). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2018;17(16-18):38-40 (in Russ.).


Review

For citations:


Bulychev N.A. Experimental Studies of Process of Hydrogen Synthesis in Plasma Discharge in a Liquid-Phase Stream. Alternative Energy and Ecology (ISJAEE). 2019;(4-6):46-50. (In Russ.) https://doi.org/10.15518/isjaee.2019.04-06.046-050

Views: 783


ISSN 1608-8298 (Print)