Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Features of Studying Atomic Hydrogen – Metal Systems

https://doi.org/10.15518/isjaee.2019.13-15.62-87

Abstract

All the main areas of energy development suggest or are already implementing the use of metal-hydrogen systems. For nuclear energy, this is associated with the creation of thermostable moderators and special-purpose construction materials, for thermonuclear energy, with the behavior of the so-called first wall of fusion reactors, for hydrogen energy — storage, transportation and extraction of hydrogen. Hydrogen is the most effective moderator of fast and thermal neutrons, especially at high volumetric concentrations of hydrogen atoms in the material, i.e. at a high value of the ratio of the number of hydrogen atoms to the number of metal atoms, taking into account the heat resistance of the hydride. This paper discusses the modern methods of experimental studies of heterogeneous reactions, the topochemistry of metal – hydrogen reactions, the dependence of the interaction rate on pressure and temperature, models of surface processes occurring during the interaction of hydrogen with metal.  Methods for determining the probability of adsorption of hydrogen on a metal surface, methods for measuring the activation energy of dissociation of a hydrogen molecule on a surface are also discussed. The paper describes the fea-tures of the preparation of the reactor, experimental samples and the method of their study in the study of atomic hydrogen-metal systems, the method of plasma-chemical thermogravimetry used to study heterogeneous reactions occurring in a hydrogen plasma electrodeless discharge. In order to study the mechanism of interaction of hydrogen with hydride-forming metals, a kinetic method of research is proposed. The essence of the kinetic method is that the elimination of the limiting influence of surface and diffusion processes on the rate of hydride formation using atomic hydrogen and metal foil makes it possible to directly record the formation of the corresponding phases using hydro-gen-metal kinetic curves, and also study the effect of various parameters on the rate of interaction and the formation of hydride phases.  

About the Authors

D. V. Schur
Frantsevich Institute for Problems of Materials Science of NASU
Ukraine

Dmitry Schur  - Ph.D. in Chemistry, Professor, Chief of Laboratory no. 67 ―Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation

3 Krzhyzhanovsky Str., Kiev, 03142



S. Yu. Zaginaichenko
Frantsevich Institute for Problems of Materials Science of NASU
Ukraine

Svetlana Zaginaichenko - D.Sc. in Physics and Mathematics, Professor, Senior Researcher at Laboratory no. 67 ―Investigation of Processes and Systems of Hydrogen and Solar-Hydrogen Energy Transformation

3 Krzhyzhanovsky Str., Kiev, 03142



A. Veziroglu
International Association for Hydrogen Energy
United States

Ayfer Veziru  - Ph.D., Executive Vice President and Chief Financial Officer of International Association for Hydrogen Energy (IAHE), member of several scientific organizations

5794 SW 40 # 303, Miami, Florida, 33155



T. N. Veziroglu
International Association for Hydrogen Energy
United States

T.N. VezirogluPh.D. in Heat Transfer, Professor, President of International Association for Hydrogen Energy, a member of 18 scientific organizations

5794 SW 40 # 303, Miami, Florida, 33155



A. D. Zolotarenko
Frantsevich Institute for Problems of Materials Science of NASU
Ukraine

Alexander Zolotarenko - Ph.D. in Chemistry, Senior Researcher

3 Krzhyzhanovsky Str., Kiev, 03142



M. T. Gabdullin
Kazakh-British Technical University (KBTU); Al-Farabi Kazakh National University
Kazakhstan

Maratbek Gabdullin - Ph.D. in Physics and Mathematics, Director of the National Nanotechnology Laboratory of the open type with the Al-Farabi Kazakh National University   

71 Ali Al-Farabi Av., Almaty 050040



T. S. Ramazanov
Al-Farabi Kazakh National University
Kazakhstan

Tlek Ramazanov - D.Sc. in Phys-ics and Mathematics, Academician of National Academy of Sciences of Kazakhstan, Vice-Rector for Research, Head of Plasma Physics Department, Al Farabi Kazakh National University  

71 Ali Al-Farabi Av., Almaty 050040



Al. D. Zolotarenko
Frantsevich Institute for Problems of Materials Science of NASU
Ukraine

Aleksey Zolotarenko - Ph.D. in Chemistry, Senior Researcher at Laboratory No 67 ―Investigation of Processes and Systems of Hydro-gen and Solar-Hydrogen Energy Transformation

3 Krzhyzhanovsky Str., Kiev, 03142



An. D. Zolotarenko
Frantsevich Institute for Problems of Materials Science of NASU
Ukraine

Anatoliy Zolotarenko - Ph.D. in Chemistry, Senior Re-searcher

3 Krzhyzhanovsky Str., Kiev, 03142



References

1. Krivoglaz M.A. Solubility in ordered alloys. I. (Rastvorimost' v uporyadochivayushchikhsya splavakh. I). Zhurn. Tekhn. Fiz., 1954;24(6):1077–1089 (in Russ.).

2. Krivoglaz M.A. Solubility in ordered alloys. II. (Rastvorimost' v uporyadochivayushchikhsya splavakh. II). Fiz. Met. i Metalloved., 1955;1(3);393–403 (in Russ.).

3. Frenkel Ya.I. Statistical physics (Statisticheskaya fizika). Moscow: Publishing house of the academy of sciences of the USSR, 1938.

4. Matysina Z.A. Effect of pressure on solubility in ordered alloys (Vliyanie davleniya na rastvorimost' v uporyadochivayushchikhsya splavakh). Ukr. Fiz. Journ., 1969;14(10):1638–1642 (in Russ.).

5. Matysina Z.A., Matysina E.A. Effect of volume effects on solubility in ordered alloys (Vliyanie ob"emnykh effektov na rastvorimost' v uporyadochivayushchikhsya splavakh). Ukr. Fiz. Journ., 1969;14(10):1643–1646 (in Russ.).

6. Matysina Z.A. Effect of volume effects on solubility in ordered interstitial alloys (Vliyanie ob'emnykh effektov na rastvorimost' v uporyadochennykh splavakh vnedreniya). Izv. Universities of the USSR, Physics., 1971;(10):89–93 (in Russ.).

7. Matysina Z.A. The influence of pressure on the solubility of interstitial atoms in ordered alloys (Vliyanie davleniya na rastvorimost' atomov vnedreniya v uporyadochivayushchikhsya splavakh). Ukr. Fiz. Journ., 1972;17(1):9–13 (in Russ.).

8. Vyatkin A.F., Zhorin P.V., Tseitlin E.M. Effect of magnetic ordering on the solubility of hydrogen in pure nickel (Vliyanie magnitnogo uporyadocheniya na rastvorimost' vodoroda v chistom nikele). Zh. Phys. Chem., 1983;57(2):419–422 (in Russ.).

9. Shvetsov N.I., Ryabov R.A., Levchenko V.P., Geld P.V. Diffusion, penetration and solubility coefficients of hydrogen in iron - nickel alloys, (Koeffitsienty diffuzii, proniknoveniya i rastvorimosti vodoroda v zhelezo-nikelevykh splavakh). Physics of metals and their compounds, 1974;(1):3–9 (in Russ.).

10. Shapovalov V.I., Boyko L.V. On the anomaly of the solubility of hydrogen in ferromagnetic metals near the curie temperature (Ob anomalii rastvorimosti vodoroda v ferromagnitnykh metallakh vblizi temperatury Kyuri). Fiz. Met. i Metalloved., 1983;55(5):1220–1221 (in Russ.).

11. Nishizawa T., Hasebe M., Ko M. Thermody-namic analysis of solubility and miscibility gap in ferro-magnetic alpha iron alloys, Acta Metallurg., 1979;27(5):817–828.

12. Takayama J., Wey M.Y., Nishizawa T. Effect of magnetic transition on the solubility of alloying elements in BCC iron of FCC cobalt. Trans. Jap. Instit. Met., 1981;22(5):315–325.

13. Miodownic A.P. The effect of magnetic transformations on phase diagrams. Bull. Alloys. Phase Diagrams, 1982;2(4):406–412.

14. Zaginaichenko S.YU., Matysina Z.A. Solubility of implantation atoms in ordered alloys with hexagonal structures of types AB and AB3 (Rastvorimost' atomov vnedreniya v uporyadochivayushchikhsya splavakh s geksagonal'nymi strukturami tipami AB i AB3). Atomic Ordering and Properties of Alloys. Kiev: Naukova dumka Publ., 1979; pp. 218–222 (in Russ.).

15. Matysina Z.A., Matysina S.Yu. Solubility and atomic order in interstitial alloys with a hexagonal lattice (Rastvorimost' i atomnyi poryadok v splavakh vnedreniya s geksagonal'noi reshetkoi). Physics of a Solid Body and Metal Physics, 1979;1:116–118 (in Russ.).

16. Matysina Z.A. Atomic order and properties of alloys (Atomnyi poryadok i svoistva splavov), Dnepropetrovsk: DGU, 1981; 112 p. (in Russ.).

17. Zaginaichenko S.Yu., Matysina Z.A., Kurbatova O.L. Impurity of embedding in alloys of the B81 and B31 structure (Primes' vnedreniya v splavakh struktury B81 i B31). Phys. Met. and Metallurgy, 1982;54(4):636–643 (in Russ.).

18. Zaginaichenko S.Yu., Kurbatova O.L, Matysina Z.A. Solubility and correlation in alloys with the B19 structure (Rastvorimost' i korrelyatsiya v splavakh so strukturoi B19). Izv. Universities of the USSR, Physics, 1982;(1):17–24 (in Russ.).

19. Krivoglaz M.A. Influence of the formation of complexes on the solubility of atoms in crystals (Vliyanie obrazovaniya kompleksii na rastvorimost' atomov v kristallakh). Phys. Met. and Metallurgy, 1984;7(6):1057–1062 (in Russ.).

20. Jons T.G., Pehlke R.D. Solubility of hydrogen in solid Ni-Co and Ni-Cu alloys. Met. Trans., 1971;2(9):2655–2663.

21. Mc Quillan A.D. Interpretation of hydrogen solutions in carly transition metals. J. Chem. Phys., 1970;53(1):151–164.

22. Jones D.W., Passall N., Mc Quillan A.D. Correlation between magnetic susceptibility and hydrogen solubility in alloys of early-transition elements. Phys. Mag., 1964;6(63):455–459.

23. Isenberg I. The ionisation of hydrogen in metal. Phys. Rev., 1950;79(4):736–737.

24. Masharov S.N., Rybalko N.M. Solubility features of hydrogen in ferromagnetic metals. Physics of Metals and Their Compounds, 1974;1:11–16.

25. Mintz M.H., Bloch J. Evaluation of the kinetics and mechanisms of hydriding reactions. Progress in Solid State Chemistry, 1985;16(3):163–194.

26. Fromhold A.T. Theory of metal oxidation. Vol. 1; Fundamentals, North-Holland, 1976; 269 p.

27. Mueller W.M., Blackledge J.P., Libowitz G.G. Metal hydrides. New York – London: Academic Press, 1968; 368 p.

28. Alefeld G., Völkl I. Hydrogen in metals, (Vodorod v metallakh). Moscow: Mir Publ., 1981; Vol. 1, 476 p; Vol. 2, 432 p.

29. Bloch J., Mintz M.H. Types of hydride phase development in bulk uranium and holmium. J. Nucl. Mater., 1982;110:251–261.

30. Bloch J., Hadari Z., Mintz M.H. Model for hydrogen chemisorption on transition metal surfaces. J. Less-Common Metals, 1984;102(2):311–324.

31. Fromm E., Uchida H. Effect of oxygen sorption layers on the kinetics of hydrogen absorption by tantalum AT 77-700 К. J. Less-Common Metals, 1979;66(1):77–81.

32. Uchida H., Fromm E. Kinetics of hydrogen absorption by titanium, tantalum, tungsten, iron and palladium films with and without oxygen preabsorption at 300 К. J. Less-Common Metals, 1983;95(2):139–148.

33. Fromm E., Wuiz H.G. Thermodynamics and kinetics of hydrogen absorption in amorphous Ni-Zr -alloys. J. Less-Common Metals, 1984;101(2):469–482.

34. Brytov I.A., Vander A.C., Neshpor B.C. The study of the surface of zirconium nitride of variable composition by the method of EOS, (Issledovanie poverkhnosti nitrida tsirkoniya peremennogo sostava metodom EOS). Surface, 1982;(11):105–111 (in Russ.).

35. Mintz M.H., Schultz J.A. Time-of-flight analysis of direct recoils applied to the study of hydrogen-metal interactions. J. Less-Common Metals, 1984;103(2):349–358.

36. Kruger J. The H-Me (hydrogen-metal) systems. Corrosion, 1966;22(1):88–96.

37. Bloch J., Simoa P., Kroup M., Stern A., Shmariahu D., Hadari Z. The initial kinetics of uranium hydride formation studied bу a hot-stage microscope technique. J. Less-Common Metals, 1984;103(1):163–171.

38. Bloch J., Mintz M.H. Kinetics and mechanism of the U-H reaction. J. Less-Common Metals, 1981;81 (2):301–308.

39. Satterthwaite C.B., Peterson B.T. Preparation, electrical and superconducting properties of massive Th4H15. J. Less-Common Metals, 1972;26(2):361–370.

40. Flanagan Т.В. Hydrogen in metals, Hydrides for energy storage: Proc. of the Intern. Symp. on hydrides for energy storage, Geilo, May 23–27, 1977. Oxford: Pergamon, 1978; pp. 135–150.

41. Mintz M.H., Bloch J. A kinetics model for hydrogen-metal reactions controlled by a phase transformation step. J. Ghem. Physics, 1983;78(11):6569–6583.

42. Pick M.A., Sonnenberg K. A model for atomic hydrogen-metal interactions – application to recycling, recombination and permeation. J. Nucl. Mater., 1985;131(2):208–220.

43. Martin A.J. Model for hydrogen chemisorption on transition metal surfaces. Surface Science, 1978;74(2):479–496.

44. Hayward D.O., Trapnell B.M. Ghemosorption. London: Butterworths, 1964; 91 p.

45. Tompkins F.G. Chemisorption of gases on metals. London: Academic Press, 1978; 176 p.

46. Taylor J.B., Langmuir I. The evaporation of atoms, ions and electrons from caesium films on tungsten. Phys. Rev., 1933;44:423–458.

47. Norskov J.K., Holloway S., Lang N.D. Point deffect diffusion in -Zr. Surface Science, 1984;137 (1):65–77.

48. Balooch M., Cardillo M.J., Miller D.R., Stickney R.E. Molecular beam study of the apparent activation barrier associated with adsorption and desorption of hydrogen on copper. Surface Science, 1974;46(2):358–392.

49. Winkler A., Rendulic K.D. Adsorption kinetics for hydrogen adsorption on nickel and coadsorption of hydrogen and oxygen. Surface Science, 1982;118(1/2):19–31.

50. Pick M.A. The kinetics of hydrogen absorption-desorption by metals. Metal Hydrides, 1980: Proc. NATO Adv. study Inst., Rhodes, June 17–27, 1980. – Rhodes: N.Y. Plenum., 1981; pp. 329–343.

51. Pick M.A., Davenport J.W. Myron Strongin and Dienes G.J. Phys. Rev. Letters, 1979;43:286–293.

52. Pick M.A., Greene M.G. Uptakes rates for hydrogen by niobium and tantalum: Effect of thin metallic overlayers. J. Less-Common Metals, 1980;73(1):89–102.

53. Ко E.L., Madix R.J. Effects of adssorbed carbon and oxygen on the chemisorption of H2 and Co on Mo (100). Surface Science, 1981;109(1):221–238.

54. Benziger J.F., Madix R.J. The coadsorption of Co and H2 on Fe (100). Surface Science, 1982;115(2):279–289.

55. Kiskinovar M., Goodman D.W. Modification of chemisorption properties bу electronegative adatoms: H2 and CO on chlorided, sulfided and phosphided Ni (100), Surface Science, 1981;109(1):64–76.

56. Dabiri A.E., Lee T.J., Stickney R.E. Spacial and speed distribution of H2 and D2 desorbed from a poly-crystalline nickel surface. Surface Science, 1971;26(2):522–544.

57. Comsa G., David R., Schumacher B.J. Past denterium molecules desorbing from metals. Surface Science, 1980;95(1):L210–L216.

58. Livshits A.I., Metter I.M., Samartsev A.A. Interconnection of a beam of atoms in a deuterium with a palladium partition, (Vzaimodeistvie puchka atomov deiteriya s palladievoi peregorodkoi). Technical Physics Journal, 1976;46(7):1490–1500 (in Russ.).

59. Livshits A.I. Superpermeability in the system of atomic hydrogen-nickel, (Sverkhpronitsaemost' v sisteme atomarnyi vodorod-nikel'). Letters to the Journal of Technical Physics, 1977;3(12):576–580 (in Russ.).

60. Lvivits A.I., Notkin M.Є., Yakovlevє S.V. Superpronality in the system of atomic water - armco-hall, (Sverkhpronitsaemost' v sisteme atomarnyi vodorod – armko-zhelezo). Letters to the Journal of Technical Physics, 1978;4(8):476–479 (in Russ.).

61. Lvivitsi A.I., Notkin M.E. The overpermeability of the niobium wall over atoms and ions of water, (Sverkhpronitsaemost' niobievoi peregorodki po atomam i ionam vodoroda). Letters to the Journal of Technical Physics, 1981;7(23):1417–1420 (in Russ.).

62. Livshits A.І., Samartsev A.A. Dosagnennya bounding values of coefing adherence and virile penetration in the system of water-paladiny partition, (Dostizhenie predel'nykh znachenii koeffitsienta prilipaniya i veroyatnosti proniknoveniya v sisteme vodorod-palladievaya peregorodka). Journal of Technical Phys-ics, 1979;49(11):2433–2436 (in Russ.).

63. Anikina N.S., Zaginaychenko S.Yu., Maistren-ko M.I., Zolotarenko A.D., Sivak G.A., Schur D.V. Spectrophotometric Analysis of C60 and C70 Fullerences in the Toluene Solutions (Hydrogen Materials Science and Chemistry of Carbon Nanomaterials), Springer, 2006;172:207–216.

64. Zolotarenko A.D., Savenko A.F., Antropov A.N., Maystranko M.I., Nikulenko R.N. Effect the nature of the reactor wall material on morphology and structure of products resulted from arc graphite sputtering Proc. of 8th International Conference ―Hydrogen Materials Science and Chemistry of Carbon Nanomaterials‖, Sudak, 2003, pp. 422–423.

65. Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu. Method for synthesis of carbon nanotubes in the liquid phase.Extended Abstracts, An International Conference on Carbon Providence (Rhode Island, USA): American Carbon Society, 2004; pp. 196–198.

66. Matysina Z.A., Zaginaychenko S.Yu., Shchur D.V. Different types of orders in crystals and phase transformations in carbon materials (Poryadki razlichnogo tipa d kristallakh i fazovye prevrashcheniya v ugle rodnykh materialakh). Monograph. Dnepropetrovsk: Science and Education, 2005; 524 p.

67. Matysina Z.A., Zaginaichenko S.Y., Schur D.V. Hydrogen solubility in alloys under pressure. International Journal of Hydrogen Energy, 1996;21(11–12): 1085–1089.

68. Lytvynenko Y.M., Schur D.V. Utilization the concentrated solar energy for process of deformation of sheet metal. Renewable energy, 1999;16(1–4):753–756.

69. Schur D.V., Zaginaichenko S.Yu., Zolotarenko A.D., Veziroglu T.N. Solubility and transformation of fullerene C60 molecule. Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science Series, 2007; pp. 85–95.

70. Hampton M.D., Schur D.V., Zaginaichenko S.Yu., Trefilov V.I. Hydrogen Materials Science and Chemistry of Metal Hydrides. Springer Science & Business Media, 867 p.

71. Zaginaichenko S.Yu., Schur D.V., Matysina Z.A. The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials. Car-bon, 2008;41(7);1349–1355.

72. Zaginaichenko S.Yu., Matysina Z.A., Schur D.V. The influence of nitrogen, oxygen, carbon, boron, silicon and phosphorus on hydrogen solubility in crystals. International Journal of Hydrogen Energy, 1996;21(11–12);1073–1083.

73. Shul’ga Y.M., Martynenko V.M., Tarasov B.P., Fokin V.N., Rubtsov V.I. On the thermal decomposition of the C60D19 deuterium fullerite. Physics of the Solid State, 2002;44(3);545–547.

74. Schur D.V., Astratov N.S., Pomytkin A.P., Zolotarenko A.D., Shaposhnikova T.I. Protection of Securities by the Application of Fullerenes.Hydrogen Materials Science and Chemistry of Carbon Nanomaterials., 2003 pp. 203–206.

75. Anikina N.S., Krivushchenko O.Ya., Schur D.V., Zaginaychenko S.Yu., Chuprov S.S. Identification of en-dohedral metal fullerenes by the method of UV-Vis-spectroscopy (Identifikatsiya endoendral'nykh me-tallofulerenov metodom UV-VIS- spectroscopii). Proceedings of the 9th International Conference ―Hydrogen Materials Science and Chemistry Chemistry of Carbon Nanomaterials‖, Sevastopol, 2005; pp. 848–849 (in Russ.).

76. Golovko E.I., Pishuk O.V., Zolotarenko A.D., Schur D.V., Zaginaichenko S.Yu. Derivatographic study of the products of arc evaporation obtained on various substrates (Derivatograficheskoe issledovanie produktov dugovogo ispareniya, poluchennykh na razlichnykh podlozhkakh). Proceedings of the IX International Confe-rence "Hydrogen materiology and chemistry Chemistry of Carbon Nanomaterials‖, Sevastopol, 2005; pp. 627–629 (in Russ.).

77. Anikina N.S., Shchur D.V., Zaginaichenko S.Yu., Zolotarenko A.D., Milto K.A. Determination of the ratio of fullerenes C60 and C70 by absorption spectroscopy (Opredelenie velichiny sootnosheniya fullerenov С60 i С70 metodom absorbtsionnoispektroskopii). Proceedings of the IX International Conference "Hydrogen material management and chemistry Chemistry of Carbon Nanomaterials‖, Sevastopol, 2005; pp. 857–558 (in Russ.).

78. Anikina N.S., Schur D.V., Zaginaichenko S.Yu., Zolotarenko A.D. The role of chemical and physical properties of C60 fullerene molecules and benzene derivatives in processes of C60 dissolving.Proceedings of 10th International Conference ―Hydrogen Materials Science Chemistry of Carbon Nanomaterials‖, Sudak, 2007, pp. 680–681.

79. Anikina N.S., Schur D.V., Zaginaichenko S.Yu., Zolotarenko A.D. On the donor-acceptor mechanism of C60 fullerene dissolving in aromatic hydrocarbons. Proceedings of 10th International Conference ―Hydrogen Materials Science and Chemistry of Carbon Nanomaterials‖, Sudak, 2007; pp. 676–679.

80. Rogozinskaya A.A., Savenko A.F., Rogozinskiy A.A., Zolotarenko A.D. Structure of hydrogenated fullerite. Proceedings of X International Conference Hydrogen Materials Science and Chemistry of Carbon Nano-materials‖, Sudak, 2007; pp. 554–555.

81. Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu., Adejev V.M., Kotko A.V. Synthesis of carbon nanostructures in gaseous and liquid medium. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. Springer Netherlands, 2007; pp. 199-212.

82. Schur D.V., Liashenko A.A., Adejev V.M., Voitovich V.B., Zaginaichenko S.Yu. Niobium as a construction material for a hydrogen energy system. International Journal of Hydrogen Energy, 1995;20(5);405–407.

83. Isayev K.B., Schur D.V. Study of thermophysical properties of a metal-hydrogen system. International Journal of Hydrogen Energy, 1996;21(11–12);1129–1132.


Review

For citations:


Schur D.V., Zaginaichenko S.Yu., Veziroglu A., Veziroglu T.N., Zolotarenko A.D., Gabdullin M.T., Ramazanov T.S., Zolotarenko A.D., Zolotarenko A.D. Features of Studying Atomic Hydrogen – Metal Systems. Alternative Energy and Ecology (ISJAEE). 2019;(13-15):62-87. (In Russ.) https://doi.org/10.15518/isjaee.2019.13-15.62-87

Views: 967


ISSN 1608-8298 (Print)