

Role of an Environmental Factor in the Development of Urban Heating Systems
https://doi.org/10.15518/isjaee.2019.19-21.061-069
Abstract
The paper focuses on multi-objective optimization of heat sources which aims to provide reliable and safe heat supply to consumers and minimal environmental impact of heating facilities. This is a structural optimization problem of a non-linear discrete nature which is difficult to formalize. The generally accepted approach to solving the problem of urban heating system development is usually reduced to a single-criterion problem of finding the minimum discounted costs for the designed energy facilities of the system subject to a great number of constraints. The environmental protection measures, in this case, are the assessment of environmental damage caused by the energy facilities and a related charge for emissions of air pollutants. The study indicates that there are other methodological approaches, in which, in the case of a single-criterion problem, the other criteria do not lose their significance and can affect greatly both the optimization process and the solutions obtained. A brief review of such approaches is presented, and the epsilon-constraint method is proposed which allows maximizing the total effect of measures aimed at protecting the atmosphere within the funds allocated to the city. The dynamic programming procedure is used to obtain a set of solutions (optimal sets of measures), each of which corresponds to some level of costs not exceeding a certain upper limit. The algorithm of the epsilon-constraint method applied to solve the problem is described. The proposed method is used in a case study of a real urban heating system. This method made it possible to obtain an effective solution with a specific list of technical and atmospheric protection measures for heat sources and heating systems. The proposed methodological approach can find practical application in feasibility studies and in the studies on the development of urban heating systems.
About the Author
O. A. EdelevaRussian Federation
Ph.D. in Engineering Sciences, Senior Researcher at the Department of Pipeline Energy Systems
References
1. Sennova E.V., Sidler V.G. Mathematical modelling and optimization of developing heating systems (Matematicheskoe modelirovanie i optimizatsiya razvivayushchikhsya teplosnabzhayuschikh sistem). Novosibirsk: Nauka Publ., 1987; 221 p. (in Russ.).
2. Khrilev L.S., Smirnov I.A. Optimization of district heating systems and centralized heat supply (Optimizatsiya sistem teplofikatsii i tsentralizovannogo teplosnabzheniya). Moscow: Energiya Publ., 1978; 264 p. (in Russ.).
3. Research of heating systems (Issledovaniya sistem teplosnabzheniya) / Edited by Popyrin L.S., Denisov V.I. Moscow: Nauka, 1989; 215 p. (in Russ.).
4. Yufa A.I., Nosulko D.R. Integrated optimization of heat supply (Kompleksnaya optimizatsiya teplosnabzheniya). Kiev: Tekhnika Publ., 1988; 135 p. (in Russ.).
5. Fedyaev A.V., FedyaevaО.N. Complex problems of heating systems development (Kompleksnye problemy razvitiya teplosnabzhayushchikh sistem). Novosibirsk: Nauka Publ., 2000; 256 p. (in Russ.).
6. Bronstein A.M., Litvin V.A., Rusin I.I. Ecologization of the economy: methods of regional management (Ekologizatsiya ekonomiki: metody regional'nogo upravleniya). Moscow: Nauka Publ., 1990; 120 p. (in Russ.).
7. Edeleva O.A. The choice of a methodological approach for solving problems of optimal development of energy sources in the heat supply systems of urban areas (Vybor metodicheskogo podkhoda dlya resheniya zadach optimal'nogo razvitiya energoistochnikov v teplosnabzhayushchikh sistemakh gorodskikh territorii). Izvestiya vysshikh uchebnykh zavedenii. Problemy energetiki, 2017;5–6:56–68 (in Russ.).
8. Mehleri E.D., Sarimveis H., Markatos N.C., Papageorgiou L.G. Optimal design and operation of distributed energy systems: Application to Greek residential sector. Renewable Energy, 2013;51:331–342.
9. Penoncello Steven G. Thermal Energy Systems. Design and Analysis. Moscow, Idaho: University of Idaho, 2015; 546 p.
10. Wang L., Yang Z., Sharma S., Mian A., Lin T.E., Tsatsaronis G., Maréchal F., Yang Y. A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants. Energies, 2019;12(1):73.
11. Goderbauer S., Bahl B., Voll P., Lübbecke M.E., Bardow A., Koster A.M. An adaptive discretization MINLP algorithm for optimal synthesis of decentralized energy supply system. Computers & Chemical Engineering, 2016;95:38–48.
12. Justification of the development of electric power systems: Methodology, models, methods, their use (Obosnovanie razvitiya elektroenergeticheskikh sistem: Metodologiya, modeli, metody, ikh ispolzovanie). Edited by Voropay N.I. Novosibirsk: Nauka, 2015; 448 p. (in Russ.).
13. Goderbauer S., Comis Martin, Willamowski Felix J. L. The Synthesis Problem of Decentralized Energy Systems is strongly NP-hard. Preprint: report 2018-043, Operations Research. RWTH Aachen University: Computers & Chemical Engineering, 2019; 18 p.
14. Carvalho M., Lozano M.A., Serra L.M. Multicriteria synthesis of trigeneration systems considering economic and environmental aspects. Applied Energy, 2012;91(1):245–254.
15. Atabay D. An open-source model for optimal design and operation of industrial energy systems. Energy, 2017;121: 803–821.
16. Law of the Russian Federation "On Environmental Protection (as amended on July 29, 2018)" dated July 29, 2017, No. 7-ФЗ (Zakon RF «Ob okhrane okruzhayushchei sredy (s izmeneniyami na 29 iyulya 2018 goda)» ot 29.07.2018 № 7-FZ), Moscow, 2018; 97 p. (in Russ.).
17. Moskvin D.A., Kalinin M.O. Prospects for the use of multi-criteria optimization in managing the security of information systems. (Perspektivy ispolzovaniya mnogokriterialnoi optimizatsii pri upravlenii bezopasnost'yu informatsionnykh system). Doklady TUSURa, 2008;1:128–129. (in Russ.).
18. Zakharov I.G. Justification of the choice. Theory of Practice (Obosnovanie vybora. Teoriya praktiki). St. Petersburg: Sudostroenie Publ., 2006; 528 p.(in Russ.).
19. Zorkaltsev V.I., Khamisov O.V. Equilibrium models in economics and energy (Ravnovesnye modeli v ekonomike i energetike). Novosibirsk: Nauka Publ., 2006; 221 p. (in Russ.).
20. Venikov V.A. Optimization of power plants and power systems: a textbook for universities (Optimizatsiya rezhimov elektrostantsii i energosistem: uchebnik dlya vuzov). Moscow: Energoizdat Publ., 1981; 464 p. (in Russ.).
21. Stennikov V., Postnikov I., Penkovskii A. Methods and models of optimal managing of district heating systems with prosumers. E3S Web of Conferences, 2017;25:5.
22. Ishizaka A., Nemery Ph. Multi-criteria decision analysis: methods and software, New Delhi, India: John Wiley & Sons, Ltd, 2013;296 p.
23. Baranova O.A. Methodical approach to the improvement of heating systems, taking into account atmospheric protection measures (Metodicheskii podkhod k sovershenstvovaniyu teplosnabzhayushchikh sistem s uchetom atmosferookhrannykh meropriyatii): Ph.D. thesis. Irkutsk, 2004, (in Russ.).
24. Protection of the atmosphere from industrial pollution: Part 1 (Zashchita atmosfery ot promyshlennykh zagryaznenii). Edited by Calvert C. and Inglunda G. Moscow: Metallurgiya Publ., 1988; 760 p. (in Russ.).
25. Methods for calculating the dispersion of emissions of harmful (polluting) substances in atmospheric air. Approved By order of the Ministry of Natural Resources of Russia of June 6, 2017 (Metody raschetov rasseivaniya vybrosov vrednykh (zagryaznyayushchikh) veshchestv v atmosfernom vozdukhe. Utv. prikazom Minprirody Rossii ot 6 iyunya 2017 goda), Moscow, 2017; 119 p. (in Russ.).
26. Kazimirovskaya, E.V., Kozlov S.V. A mathematical model for the transfer of KES emissions in the local zone (Matematicheskaya model perenosavybrosov KES v lokalnoi zone). Materialy 24-i konf. nauch. molodezhi SEI SO RAN, Irkutsk, 1994;24:20–25 (in Russ.).
27. Climatic characteristics of the conditions of distribution of impurities in the atmosphere: Reference (Klimaticheskie kharakteristiki uslovii rasprostraneniya primesei v atmosfere: Spravochnik). Edited by Bezuglaya E.Yu. Leningrad: Gidrometeoizdat Publ., 1983; 328 p. (in Russ.).
28. Hydraulic chains. Development of the theory and application (Gidravlicheskie tsepi. Razvitie teorii i prilozheniya). Edited by Gamm A.Z. Novosibirsk: Nauka Publ., Sib. izd. firma RAN, 2000; 273 p. (in Russ.).
Review
For citations:
Edeleva O.A. Role of an Environmental Factor in the Development of Urban Heating Systems. Alternative Energy and Ecology (ISJAEE). 2019;(19-21):61-69. (In Russ.) https://doi.org/10.15518/isjaee.2019.19-21.061-069