Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search

RESOURCE AND ENERGY SAVING TECHNOLOGIES BASED ON NANOSTRUCTURED SILICON

https://doi.org/10.15518/isjaee.2015.19.019

Abstract

Porous silicon is advisable to get by electrochemical etching. The porosity of the obtained samples was about 70%. The thickness of the porous layer is (150–250) nm. The results of measurement of a reflectance of solar cells with different layer thicknesses of porous silicon show increased absorptive capacity of the porous silicon with increasing thickness, which directly indicates the possibility of using this material in solar cells. The porous silicon layer thickness from 70 microns has a greater dispersibility than the layers of lesser thickness. Thus, the use of porous silicon as a raw material for solar cells has excellent prospects. Such structures have a clear advantage over traditional and greatly improved technology to produce photovoltaic devices.

About the Author

y. A. Suchikova
Berdyansk State Pedagogical University
Ukraine

PhD (physics and mathematics), associate professor of  Berdyansk State Pedagogical University



References

1. Alferov Zh.I., Andreev V.M., Rumyantsev V.D. Tendencii i perspektivy razvitiâ solnečnoj fotoènergetiki. Fizika i tehnika poluprovodnikov, 2004, vol. 38, iss. 8, pp. 937–948 (in Russ.).

2. Shvets E.Ya., Kolomoets A.G. Ocenka perspektiv primeneniâ arsenida galliâ i splavov na ego osnove v kačestve materialov dlâ solnečnyh èlementov, Meta-lurgìâ, 2013, 2 (30), pp. 132–136 (in Russ.).

3. Suchikova Y.A., Kidalov V.V., Sukach G.A. Mor-phology of porous n-InP (100) obtained by electrochem-ical etching in HCl solution. Functional Materials, 2010, vol. 17, no. 1, pp. 1–4 (in Eng.).

4. Suchikova Ya.A., Kidalov V.V., Sukach G.A. Vliânie dislokacij na process poroobrazovaniâv monokristallah n-InP (111). Fizika i tehnika poluprovodnikov. 2011, vol. 45, no. 1, pp. 123–126 (in Russ.).

5. Suchikova Y.A., Kidalov V.V., Sukach G.A. Zavi-simost’ veličiny porogovogo naprâženiâ poroobra-zovaniâ fosfida indiâ ot sostava èlektrolita. Poverhnost’. Rentgenovskie, sinhrotronnye i nejtronnye issledovaniâ, 2013, no. 5, pp. 1–6 (in Russ.).

6. Despotulin A., Andreeva A. Superkondensatory dlâ èlektroniki. Sovremennaâ èlektronika, 2006, no. 5, pp. 13–14 (in Russ.).

7. Krutikov A. Al’ternativnye istočniki hraneniâ ènergii. Silovaâ èlektronika, 2005, no. 3, pp. 22–25 (in Russ.).

8. Ivanov A.M., Gerasimov A.F. Molekulârnye nakopiteli èlektričeskoj energii na osnove dvojnogo èlek-tričeskogo sloâ. Èlektričestvo, 1991, no. 8, pp. 16–19 (in Russ.).

9. Denycikov K.K., Shcherbina B.V. Sostoânie tehniki i rynka superkondensatorov. Moscow: izd. MGU prikladnoj biotehnologii Publ., 2004, p. 100 (in Russ.).

10. Denshchikov K. Stacked Supercapacitor Tech-nology. New Perspectives & Chances, Supercaps Europe – European Meeting on Supercapacitors: Development and Implementation in Energy and Transportation Tech-niques. Berlin, Germany, Nov. 2005 (in Eng.).


Review

For citations:


Suchikova y.A. RESOURCE AND ENERGY SAVING TECHNOLOGIES BASED ON NANOSTRUCTURED SILICON. Alternative Energy and Ecology (ISJAEE). 2015;(19):136-141. (In Russ.) https://doi.org/10.15518/isjaee.2015.19.019

Views: 790


ISSN 1608-8298 (Print)