Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Comparative Analysis of Specific Indicators of Cogeneration Gas Turbine Unit Working on Aluminum and Boron Oxidation Products

https://doi.org/10.15518/isjaee.2019.28-33.073-085

Abstract

The paper presents a cogeneration power unit based on a gas turbine engine with an external heat supply to the working fluid-air. Aluminum powder or boron are used as fuel, and air is used as an oxidizing agent. On the basis of the chemical thermodynamics equations, we have calculated the heat of aluminum powder oxidation at 31,005 kJ per 1kg of aluminum and 26,283 kJ per 1kg of boron. The fuel utilization factor by a power plant operating on the aluminum is 0.578 and on the boron is 0.501. Specific consumption of conventional fuel at the operation of the power unit on aluminium in the production of electric energy is 163.6 gOE/(kWh), and on the boron is 185 gOE/ (kWh), and thermal energy – 67.6 and 76.49 kgOE/GJ respectively. Specific production of the electrical energy by external heat consumption when working on aluminum and boron are 136.5 and 136.5 kWh/(GJ), respectively. The paper gives specific fuel costs for a power plant without using the exhaust heat after the gas turbine for heating network water. The data obtained are compared with those power plants working on organic fuels. Material and thermal balances are summarized. In gas turbines, it is preferable to use aluminum as a fuel. Boron shows the worst specific parameters.

About the Authors

S. E. Shcheklein
Ural Federal University Named after the First President of Russia B.N. Yeltsin
Russian Federation

Sergey Shcheklein D.Sc. in Engineering, Professor, the Head of Atomic Stations and Renewable Energy Sources Department; a member of the editorial board of “Institute of Higher Education News. Nuclear Power”; International Scientific Journal for Alternative Energy and Ecology (ISJAEE); “Nuclear Power Units Heat Engineering” USTU; Odessa National Polytechnic University article collection; Scientific Journal of “Energy Effectiveness and Analysis”.

19 Mir Str., Ekaterinburg, 620002



A. M. Dubinin
Ural Federal University Named after the First President of Russia B.N. Yeltsin
Russian Federation

Alexey Dubinin D.Sc. in Engineering, Professor of Power Engineering and Thermal Engineering Department

19 Mir Str., Ekaterinburg, 620002



References

1. Shcheklein S.E., Vlasov V.V. Nonstationary random processes modeling in renewable energy problems (Modelirovanie nestacionarnyh sluchajnyh processov v zadachah obosnovaniya vozobnovlyaemyh istochnikov energii). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2012;3(107):67–71 (in Russ.).

2. Obuhova N.V., Egorov A.O., Shcheklein S.E. On the possibility of PV ES working together with the power grid on energy quality parameters (O vozmozhnosti sovmestnoj raboty SES s energosistemoj po parametram kachestva energii). Trudy vtoroj nauchno-tekhnicheskoj konferencii molodyh uchenyh Ural'skogo energeticheskogo instituta, Ekaterinburg, 2017; pp. 236–238 (in Russ.).

3. Elistratov V.V. Accumulation of electricity from renewable energy for centralized energy supply (Akkumulirovanie elektroenergii ot VIE dlya centralizovannogo energosnabzheniya. V sbornike: Prirodoohrannye i gidrotekhnicheskie sooruzheniya: problemy stroitel'stva, ekspluatatsii, ekologii i podgotovki specialistov). Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii. Samarskii gosudarstvennyi arhitekturno-stroitel'nyi universitet, 2014; pp. 289–294 (in Russ.).

4. Franzoni F., Milani M., Montorsi L., Golovitchev V. Combined hydrogen production and power generation from aluminum combustion with water:Analysis of the concept. International Journal of Hydrogen Energy, 2010;35(4):1548–1559 (in Eng.).

5. Shkolnikov E.I., Zhuk A.Z., Vlaskin M.S. Aluminum as energy carrier: Feasibility analysis and current technologies overview. Renewable and Sustainable Energy Reviews, 2011;15(9):4611–4623 (in Eng.).

6. Dudoladov A.O., Buryakovskaya O.A., Vlaskin M.S., Zhuk A.Z., Shkol'nikov E.I. Experimental study of low-temperature aluminium oxidation processes with hydrogen release (Eksperimental'noe issledovanie processov nizkotemperaturnogo okisleniya alyuminiya s vydeleniem vodoroda). International Scientific Journal for Alternative Energy and Ecology (ISJAEE); 2015;21(185):112–120 (in Russ.).

7. Ambaryan G.N., Dudoladov A.O., Meshkov E.A., Vlaskin M.S., Zhuk A.Z., Shkol'nikov E.I. Hydrogen generation by oxidation of aluminium in a lowconcentrated water solution of potassium lye with intensive mixing (Generatsiya vodoroda putem okisleniya alyuminiya v nizkokoncentrirovannom vodnom rastvore kalievoi shchelochi pri intensivnom peremeshivanii). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;23(187):95–104 (in Russ.).

8. Larichev M.N., Laricheva O.O., Lejpunskij I.O., Pshechenkov P.A. The reaction of aluminium particles with liquid water and water vapor is a promising source of hydrogen for hydrogen energy needs (Reaktsiya alyuminievyh chastic s zhidkoi vodoi i vodyanym parom – perspektivnyi istochnik vodoroda dlya nuzhd vodorodnoi energetiki). Izvestiya Rossiiskoi akademii nauk. Energetika, 2007;(5):125–139 (in Russ.).

9. Larichev M.N., Shajtura N.S., Laricheva O.O., Kolokol'nikov V.N., Shkol'nikov E.I. The oxidation of ASD4 aluminium powder with water. The possibilities of chemical and physical activation of the process. Getting nanoscale oxidation products (Okislenie alyuminievogo poroshka ASD-4 vodoi. Vozmozhnosti himicheskoi i fizicheskoi aktivatsii protsessa. Poluchenie nanorazmernyh produktov okisleniya). Izvestiya Rossiiskoi akademii nauk. Energetika, 2010:(2):85–104 (in Russ.).

10. Bergthorson J.M., Goroshin S., Soo M.J., Julien P., Jarvis D.J. Direct combustion of recyclable metal fuels for zero-carbon heat and power. Applied Energy, 2015;160:368–382 (in Eng.).

11. Bergthorson J.M. Recyclable metal fuels for clean and compact zero-carbon power. Progress in Energy and Combustion Science, 2018;68:169–196 (in Eng.).

12. Kleiner K. Powdered Metal: The Fuel of the Future. New Scientist, 2005;185(2522):34–37 (in Eng.).

13. Korotkikh A., Slyusarskiy K., Sorokin I., Arkhipov V. Ignition study of high-energy materials containing Al, B, AlB2 and TiB2 powders. V sbornike: MATEC Web of Conferences, 33rd Siberian Thermophysical Seminar, STS 2017, 2017; pp. 03016 (in Eng.).

14. Korotkih A.G., Ionova I.A., Karpovich M.K. Study of kinetics of oxidation and burning aluminum powders (Issledovanie kinetiki okisleniya i goreniya poroshkov alyuminiya). Sbornik trudov XVIII Mezhdunarodnoi nauchno-prakticheskoi konferentsii "Sovremennye tekhnika i tekhnologii". Tomsk, 2012; pp. 359– 360 (in Russ.).

15. Korotkih A.G., Arhipov V.A., Sorokin I.V., Selihova E.A. Ignition and combustion of high-energy materials containing aluminium, boron and aluminium diboride (Zazhiganie i gorenie vysokoenergeticheskih materialov, soderzhashchih alyuminii, bor i diborid alyuminiya. Himicheskaya fizika i mezoskopiya, 2018;20(1):5– 14 (in Russ.).

16. Malinin V.I., Serebrennikov S.Yu., Berbek A.M. Analysis of the burning features of metal powders in mixtures with air, water, carbon dioxide (Analiz osobennostei goreniya poroshkov metallov v smesyah s vozduhom, vodoi, dioksidom ugleroda). Pozharovzryvobezopasnost', 2010;19(4):12–17 (In Russ.).

17. Karapet'yanc M.H., Karapet'yanc M.L. Basic thermodynamic constants of inorganic and organic substances (Osnovnye termodinamicheskie konstanty neorganicheskih i organicheskih veshchestv). Moscow: Himiya Publ., 1968; 470 p. (in Russ.).

18. Karapet'yanc M.H.. Himicheskaya termodinamika. Moscow: HimiyaPubl., 1975; 504 p. (in Russ.).

19. Bazhenov M.I., Bogorodskij A. S., Sazanov B.V., Yurenyov V.N. Industrial thermal power plants: A textbook for universities (Promyshlennye teplovye elektrostantsii: Uchebnik dlya vuzov); Ed. Sokolov A.S.. 2-e izd., pererab. Moscow: Energiya Publ., 1979; 296 p. (in Russ.).

20. Yakovlev B.V. Improving the efficiency of heating and heating systems (Povyshenie effektivnosti sistem teplofikacii i teplosnabzheniya). Moscow: Novosti teplosnabzheniya Publ., 2008; 448 p. (in Russ.).

21. Cernuschi F., Bison P., Mack D.E., Merlini M., Stamm W. Thermo-physical properties of as deposited and aged thermal barrier coatings (TBC) for gas turbines:Stateof-the art and advanced TBCs. Journal of the European Ceramic Society, 2018;38(11):3945–3961 (in Eng.).

22. Gorunov A.I. Complex refurbishment of titanium turbine blades by applying heat-resistant coatings by direct metal deposition. Engineering Failure Analysis, 2018;86:115–130 (in Eng.).

23. Kustov A.D., Parfenov O.G. High-speed aluminium metallurgy (Vysokoskorostnaya metallurgiya alyuminiya). Doklady akademii nauk. Himiya, 2015;462(5):555–557 (in Russ.).


Review

For citations:


Shcheklein S.E., Dubinin A.M. Comparative Analysis of Specific Indicators of Cogeneration Gas Turbine Unit Working on Aluminum and Boron Oxidation Products. Alternative Energy and Ecology (ISJAEE). 2019;(28-33):73-85. (In Russ.) https://doi.org/10.15518/isjaee.2019.28-33.073-085

Views: 403


ISSN 1608-8298 (Print)