Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Assessment Method of Technical and Economic Parameters of a Grid-Connected Wind Power Plant for Conditions in Syria.

https://doi.org/10.15518/isjaee.2020.01-06.012-030

Abstract

In this study, a methodology is developed to evaluate the technical and economic parameters of a grid-connected wind power plant in Syria. The methodology was used for designing a grid-connected wind power plant in the area close to the Al-Sukhnah town (in Homs province), which is one of the most promising areas in Syria to build wind farms. Technical assessment of a 12 MW grid-connected wind power plant, which consists of 8 wind turbines with rated power of 1.5MW for each one, is performed using the WindPRO software. The following tasks are carried out in WindPRO: the microscale numerical modeling of the wind flow of the area with consideration the terrain and roughness, determination of wind resources at wind turbine tower height, selection of suitable wind turbine and definition of energy production. The results of the technical assessment show that the wind power density in the power plant site at wind turbine tower height is 333–459 W/m2 with average annual wind speed of 6.5–7.7 m/s, energy production is 38391.1 MWh/year with consideration the losses, capacity factor is 36.5% with full load hours of 3199 h/year. Economic assessment of the considered power plant is performed in Excel program. The following economic indicators are calculated in Excel: net present value (NPV), discounted payback period (DPP), internal rate of return (IRR), profitability index (PI), the normalized cost of energy (LCOE). The results of calculations show that the proposed grid-connected wind power plant is completely profitable for conditions in Syria.

About the Authors

A. Ramadan
Peter the Great Saint Petersburg Polytechnic University
Syrian Arab Republic

Amer Ramadan, Ph.D. Student at the Higher School of High Voltage Energy, Institute of Energy

Researcher ID: U-1795-2018

Scopus Author ID: 57203214224  

29 Politehnicheskaya Str., Saint Petersburg, 195251, Russia




V. V. Elistratov
Peter the Great Saint Petersburg Polytechnic University
Russian Federation

Viktor Elistratov,  D.Sc. in Engineering, the Director of Scientific Center “Renewable Energy Sources”; Professor of the Higher School of Hydraulic Engineering and Power Engineering Construction

Researcher ID: C-3627-2016

Scopus: 57189578726 

29 Politehnicheskaya Str., Saint Petersburg, 195251, Russia





References

1. International renewable energy agency (IRENA). Renewable energy statistics 2019 E-resource. Available on: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Jul/IRENA_Renewable_energy_statistics_2019.pdf (09.10.2019.).

2. International renewable energy agency (IRENA). Renewable power generation costs in 2018 E-resource. Available on: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf (09.10.2019.).

3. International renewable energy agency (IRENA). Wind Power: Technology brief 2016 Eresource. Available on: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA-ETSAP_Tech_Brief_Wind_Power_E07.pdf (09.10.2019).

4. Ramadan A., Elistratov V.V. Potential of traditional and renewable energy sources in Syria (Potentsial traditsionnykh i vozobnovlyayemykh istochnikov energiiv Sirii). Energokhozyaystvo za rubezhom, 2017;5(294):15−21 (in Russ.).

5. Ramadan A., Elistratov V.V. Use of renewable energy sources in Syria (Ispol'zovaniye vozobnovlyayemykh istochnikov energii v Sirii). In the collection: Renewable energy: problems and prospects. Actual problems of renewable energy resources development. Proceedings of the V International conference – Makhachkala (V sbornike: Vozobnovlyayemaya energetika: problem I perspektivy. Aktual'nyyeproblemyosvoyeniyavozobnovlyayemykhenerg oresursovMaterialy V Mezhdunarodnoy konferentsii), 2017; pp. 135–141 (in Russ.).

6. Elistratov V., Ramadan A. Energy potential assessment of solar and wind resources in Syria. Journal of Applied Engineering Science, 2018;16(2):208–216.

7. Ramadan A. Study and calculation of wind power plant parameters for Syria conditions (Issledovaniyeiraschotparametrovvetroelektrostantsiidlya usloviySirii). Master thesis, Saint Petersburg, Peter the Great Saint Petersburg Polytechnic University, 2016; 110 p. (in Russ.).

8. Ramadan A.M., Elistratov V.V. Using of wind energy potential to power supply the province of Homs (Syria) (Ispol'zovaniye potentsiala vetrovoy energii dlya energosnabzheniya provintsii Khoms (Syria). In the collection: Environmental, industrial and energy security2018 based on the materials of the international scientific and practical conference, Sevastopol (V sbornike: Ekologicheskaya, promyshlennaya I energeticheskaya bezopasnost' – 2018 po materialam mezhdunarodnoy nauchno-prakticheskoy konferentsii, Sevastopol'), 2018; pp. 983–986 (in Russ.).

9. Hasoneh Refa’t. Grid Integration of Al Haijana Wind Park in Syria. Master thesis, Germany, Kassel University, 2011; 120 p.

10. NERC (National Energy Research center), Damascus, Syria E-resource. Available on: http://www.nerc.gov.sy/ (09.01.2019).

11. CLIMATE-DATA.ORG, Climate data for cities worldwide E-resource. Available on: https://en.climatedata.org/asia/syria/homs/as-sukhnah-429511/ (09.27.2019).

12. Slivkanich M.A. Methods of assessing wind energy resources in conditions of limited natural-climatic information (Metodiki otsenki vetroenergeticheskikh resursov v usloviyakh ogranichennosti prirodnoklimaticheskoy informatsii). Master thesis, Saint Petersburg, Peter the Great Saint Petersburg Polytechnic University, 2016; 128 p. (in Russ.).

13. Van Ackere S., van Eetvelde G., Schillebeeckx D., van Wyngene K., Vandevelde L. Wind resource mapping using landscape roughness and spatial interpolation methods. Energies, 2015;8(8):8682–8703.

14. Albani A., Ibrahim M. Z., Wind Energy Potential and Power Law Indexes Assessment for Selected Near-Coastal Sites in Malaysia. Energies, 2017;10(3):307.

15. Yue C.-D., Liu C.-C., Tu C.-C., Lin T.-H. Prediction of Power Generation by Offshore Wind Farms Using Multiple Data Sources. Energies, 2019;12(4):700.

16. Lee, J. C.-Y., M. J. Fields, J. K. Lundquist., Assessing Variability of Wind Speed: Comparison and Validation of 27 Methodologies. Wind Energy Science, 2018;3:845–868.

17. WindPRO / PARKIntroduction to the Estimation of Extreme Wind Speeds and Wind Loads, EMD International A/S E-resource. Available on: http://www.emd.dk/files/windpro/manuals/for_print/Appendices-all_UK.pdf (09.27.2019).

18. Ramadan H.S. Wind energy farm sizing and resource assessment for optimal energy yield in Sinai Peninsula, Egypt. Journal of Cleaner Production, 2017;161:1283–1293.

19. U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), 2018 Wind Technologies Market Report E-resource. Available on: https://www.energy.gov/sites/prod/files/2019/08/f65/2018%20Wind%20Technologies%20Market%20Report%20FINAL.pdf (09.27.2019).

20. Ramadan A., Elistratov V.V., Modeling the Operation Modes of a Grid Windmill Equipped witha Permanent Magnet Synchronous Generator (Modelirovaniye rezhimov raboty setevoy vetroenergeticheskoy ustanovki s sinkhronnym generatorom na postoyannykh magnitakh). Elektrichestvo, 2019;(7):11–21 (in Russ.).

21. VENSYS 82-1.5 MW, TechnicalData Eresource. Available on: https://www.vensys.de/fileadmin/user_upload/Windkraftanlagen/1.5_MW-Plattform/Vensys_82/DS-VENSYS82-1.5MW.pdf (08.01.2019).

22. GOLDWIND 1.5 MW, TechnicalSpecifications E-resource. Available on: https://www.goldwindamericas.com/sites/default/files/G oldwind%20Americas_Goldwind%201.5MW%20Brochure%20%282017%29_0.pdf (08.01.2019).

23. Public Establishment of Electricity for Generation (PEEG), Technical statistical report E-resource. Available on: http://peeg.gov.sy/ (12.01.2018).

24. International Energy Agency (IEA), Highlights version of CO2 emissions from Fuel combustion database E-resource. Available on: http://www.iea.org (01.01.2014).

25. Cali U., Erdogan N., Kucuksari S., Argin M. Techno-economic analysis of high potential offshore wind farm locations in Turkey. Energy Strateg. Rev., 2018;22:325–336.

26. Rodrigues S., Restrepo C., Katsouris G., Teixeira Pinto R., Soleimanzadeh M., Bosman P., Bauer P., A Multi-Objective Optimization Framework for Offshore Wind Farm Layouts and Electric Infrastructures. Energies, 2016;9(3):216.

27. Serdari1 E., Muda V., Buzra U., Bërdufi I., Halili D., Halili M., Mitrushi D., Berberi P., The feasibility study of a 12 MW grid-connected wind power farm in Albania using RETScreen. AIP Conference Proceedings, 2019;2075(1):200021.

28. Al-Rawashdeh H.A., Hasan A.O., Ahmad R.A. Evaluation the wind turbines farm in the town of Tafila / Jordan. International Journal of Development Research, 2018;8(10):23218–23224.

29. Bakić V., Pezo M. V., Stojković L., Technical and economic analysis of grid-connected PV/Wind energy stations in the Republic of Serbia. FME Transactions, 2016;44:71–82.

30. Ministry of electricity of Syria. Available on: http://www.moe.gov.sy (08.01.2019).

31. Financial markets platform, investing.com Eresource. Available on: https://www.investing.com/commodities/carbonemissions (04.12.2019).


Review

For citations:


Ramadan A., Elistratov V.V. Assessment Method of Technical and Economic Parameters of a Grid-Connected Wind Power Plant for Conditions in Syria. Alternative Energy and Ecology (ISJAEE). 2020;(1-6):12-30. (In Russ.) https://doi.org/10.15518/isjaee.2020.01-06.012-030

Views: 886


ISSN 1608-8298 (Print)