

Influence of Ultrasonic Vibration Machining of Surface of the Crystalline Silicon Plates Physical Properties of the Solar Energy Devices
https://doi.org/10.15518/isjaee.2020.07-18.12-23
Abstract
The paper concerns technologies of alternative energy, in particular, solar energy. The research discusses the results change in optical parameters of silicon plates influences due to ultrasonic machining. For experiments, the crystalline con plates of p-type of the conductivity are used for solar cells manufacturing are chosen. We have made ultrasonic chining of a surface of silicon plates by means of the special device. The device consists of the mainframe of mechanl influence, the air compressor and the of ultrasonic frequency generator. The mainframe of mechanical influence is pplied by system of adjustment of air pressure, a vibrator, working cylinders of mechanical vibration transmission, a herical micro-probe from firm metal, the channel of pressure transfer upon the vibrator. The roughness of a surface and factor of reflexing from a surface depending on length of a wave of an incident ht before and after machining are measured. On the basis of LSM-images received and an estimation of roughness d also measurements of light reflexing factor, the surface texturing mechanism which can be used for production of gh effective solar cells is offered. Moreover, we have researched the influence of ultrasonic machining of a surface silicon plates for life period of the minority charge carriers in silicon plates before processing by means of the spel device. For measurement of life time of minority charge carriers in silicon plates before machining, we have emoyed the method of quasi-stationary photoconductivity based on contactless measurement of conductivity of a plate influence of pulse radiation allowing to spend an estimation of sizes of effective life time of minority charge carri. The received experimental results, physical interpretation of processes of light absorption in the plates subjected ultrasonic machining and change of life time of the photo-generated carriers of a charge allow us to recommend a w way of increase of silicon solar cells efficiency.
About the Authors
R. AlievUzbekistan
Rayimjon Aliev, DSc. in Engineering, Professor of Physics Department
129 University Str., Andijan, 170100, Uzbekistan
J. Ziyoitdinov
Uzbekistan
Jakhongir Ziyoitdinov, hD student on Physics of Semiconductors specialty
129 University Str., Andijan, 170100, Uzbekistan
B. Urmanov
Uzbekistan
Bakhtiyor Urmanov, Researcher on Physics of Semiconductors
129 University Str., Andijan, 170100, Uzbekistan
References
1. Zainabidinov S., Aliev R, Muydinova М. Features of radiation absorption in silicon with a surfaces structure and its influence on properties of photoelectric converters (Osobennosti pogloshcheniya izlucheniya v kremnii s poverkhnostnoi teksturoi i ego vliyanie na svoistva fotoelektricheskikh preobrazovatelei). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2019;28–33:312–317 (in Russ.).
2. Nikitin B.A., Gusarov V.А. Experimental estimation of factor of reflexing of silicon photoelectric converters (Eksperimental'naya otsenka koeffitsienta otrazheniya kremnievykh fotoelektricheskikh preobrazovatelei). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2016;7–8:12–18; https://doi.org/10.15518/isjaee.2016.07-08.012-018 (in Russ.).
3. Nikitin B.A., Gusarov V.А. Estimation of optimum parameters and limiting characteristics of silicon cascade photoconverters (Otsenka of optimum parametres and limiting characteristics of cascade silicon photoconverters). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;21:24–29; https://doi.org/10.15518/isjaee.2015.21.003 (in Russ.)
4. Zainabidinov S., Aliev R., Muydinova М., Urmanov B. About optical efficiency of silicon photoelectric converters of solar energy (Ob opticheskoi effektivnosti kremnievykh fotoelektricheskikh preobrazovatelei solnechnoi energii). Geliotehnika (Applied Solar Energy), 2018;6:12–17 (in Russ.).
5. Lizunkova D.A. Investigation on the electrical and optical properties of photosensitive structures on nanostructured silicon. PhD thesis on Physics and mathematics speciality (Dissertatsiya na soiskaniye uchenoy stepeni kand, fiz.-mat. nauk po spetsialnosti fizika poluprovodnikov. Issledovanie elektricheskih i optocheskih svoystv fotochuvstvitelnih strultur na nanostruktrirovannom kremnii). Samara, 2018, 150 p. (in Russ.).
6. Nikitin S.E., Nashekin A.V., Terukova, E.E., Trapeznikova, I.N., Bobil, A.V., Verbitskiy V.N. Surfacestexture of crystalline silicon oxidised under thinLayer V2O5 (Textura poverhnosti monokristallicheskogo kremniya, okislennogo pod tonkim sloem V2O5). Fizika poluprovodnikov, 2017;51(1):105–110 (in Russ.).
7. Fundamentals of manufacturing technology of silicon solar photoconverters (Osnovy tehnologii izgotovleniya kremnievih solnechnih fotopreobrazovateley) [Eresource]. Available on: https://avenston.com/ru/articles/fundamentals-of-thetechnology-of-production-of-silicon-solar-cells/ (11.26.2017) (in Russ.).
8. Aldashkin G.V. SEM study of porous silicon (Issledovaniye poristogo kremniya metodom REM). Molodoy ucheniy, 2016;10:337–340 [E-resource]. Available on: https://moluch.ru/archive/114/30315/ (04.06.2020) (in Russ.).
9. Orehov V.Yu., Drujinin A.A. Silicon multiporous texture for solar energy photovoltaic converters (Kremniy multiporistiy texture dlya fotoelektricheskih preobrazovateley solnechnoy energii). Tehnologiya i konstruirovaniye v elektronnoy apparature, 2009;3:21– 23 (in Russ.).
10. Kwon H., Lee J., Kim M., Lee S. Investigation of Antireflective Porous Silicon Coating for Solar Cells. International Scholarly Research Network ISRN Nanotechnology, 2011;2011:1–4; Article ID 716409, doi: 10.5402/2011/716409. .
11. Haydukov E.V., Hramova O.D., Rocheva V.V., Zuev D.A, Novodvorskiy O.A., Lotin A.A., Parshina L.S., Poroykov A.Yu., Timofeev M.A., Untila G.G. Silicon Laser Texturing for Solar Cells (Lazernoe texturirovaniye kremniya dlya sozdaniya solnechnih elementov). Izvestiya vuzov. Priborostroenie, 2011;54(2):26–32 (in Russ.).
12. Dobrzanski L.A., Drygala A., Panek P., Lipinsky M., Zieba P. Development of the laser method of multicrystalline silicon surface texturization. Arhives of Mater. Sci. and Eng., 2009;38:5–11.
13. Abbott M., Cotter J. Optical and electrical properties of laser texturing for high-efficiency solar cells. Prog. Photovolt: Res. Appl., 2006;14:225–235.
14. Semiconductor photoconductivity and light absorption (Fotoprovodimost i pogloshenie sveta poluprovodnikami), 2017 [E-resource]. Available on: https://poznayka.org/s84837t1.html (06.22.2016.) (in Russ.).
15. Aouida S., Zaghouani R.B., Bachtouli N., Bessais B. Effective minority carrier lifetime measured in qss mode and Silicon surface treatments. 31st European Photovoltaic Solar Energy Conference and Exhibition. [E-resource]. Available on: https://www.researchgate.net/publication/286455363 (15/09.2015.).
16. Garlick M. Flexo-photovoltaic effect. Science, 2018:360(6391):904-907; DOI: 10.1126/Science. aan3256 [E-resource]. Available on: https://nplus1.ru/news/2018/04/20/flexo-photovoltaiceffect. (25.04.2018).
17. Yang M.-M., Kim D.J., Alexe M. New type of silicon promises cheaper solar technology. Physical Review Letters, Apr., 24, 2019 [E-resource]. Available on: https://phys.org/news/2019-04-silicon-cheaper-solartechnology.html. (04.24.2019).
18. Aliev R., Urmanov B., Muydinova M., Kahharov J. Stimulation of the lifetime of charge carriers due to the flexoelectric effect on the silicon surface (Stimulirovaniye vremeni jizni nositeley zaryada za chet flexo-elektricheskogo effekta na poverhnosti kremniya. Materialy IV Mejdunarodnoy konferentsii po “Opticheskim I fotoelektricheskim yavleniyam v poluprovodnikovyh mikro- i nanostrukturah”), May 26–27, 2018, pp. 277–279 (in Russ.).
Review
For citations:
Aliev R., Ziyoitdinov J., Urmanov B. Influence of Ultrasonic Vibration Machining of Surface of the Crystalline Silicon Plates Physical Properties of the Solar Energy Devices. Alternative Energy and Ecology (ISJAEE). 2020;(7-18):12-23. (In Russ.) https://doi.org/10.15518/isjaee.2020.07-18.12-23