Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Photovoltaic Power Forecasting: Basic Approaches and Features

https://doi.org/10.15518/isjaee.2020.07-18.24-43

Abstract

The article is devoted to the tasks of forecasting the productivity of solar power plants (SPP) and PV-unit. A review of modern forecasting methods and the actual basis for its implementation is made. Accepted classifications of methods are presented, the basis of which is the “direct forecasts - indirect forecasts” approach. The basis of the second approach is the forecast of solar radiation with subsequent conversion to the productivity of solar power plants. Accordingly, in the first case, a series of data on plants productivity over long periods in the past are of great importance and mainly statistical and machine learning methods are used. The second approach is based on a numerical weather forecast, which provides, among other things, a solar radiation forecast. A significant influence on the choice of forecasting methods is provided by the required spatial and temporal horizon. The latter is determined by the electricity market rules in a particular country or region. The problem of spatial resolution is important for power plants occupying large areas, as well as in forecasting the productivity of a network of solar plants. The article presents the currently adopted forecast metrics which allow estimating errors, as well as comparing the effectiveness of various forecasting methods. The prospects of developing probabilistic forecasts as an alternative to deterministic approaches are shown. Probabilistic forecasts are more likely to meet network requirements. The requirements of grid operators in some countries for forecasting the productivity of SPP and the penalties in case of a high forecast error are considered in the article. Examples of financial losses from forecast errors are shown on the example of solar power plants in the USA and China. The requirements of the Russian Federation wholesale energy and capacity market are discussed. The market sets the maximum permissible deviations from the declared energy production by stations (including SPP) and fines for these deviations. The article presents the financial  losses estimates from errors in productivity forecasts for solar energy plants in the Russian Federation.

About the Authors

S. V. Kiseleva
Lomonosov Moscow State University, Faculty of Geography
Russian Federation

Sofia Kiseleva, Ph. D. in Physics and Mathematics, Senior Researcher at Renewable Energy Sources Laboratory 

ID E-3324-2014
Scopus Author ID 57201352245

Leninskie Gori, Moscow, 119991, Russia

 



N. V. Lisitskaya
Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation
Natalya Lisitskaya, Leading Engineer, Joint Institute for High Temperatures of the Russian Acad-emy of Sciences

ID 57194546812

Bd.2, 13 Izhorskaya Str. Moscow, 125412, Russia

 



S. E. Frid
Joint Institute for High Temperatures of the Russian Academy of Sciences
Russian Federation

Semen Frid, Ph.D. in Engineering, Head of Laboratory, Joint Institute for High Temperatures of the Russian Academy of Sciences

SPIN-код: 2420-5962
ResearcherID: C-3046-2014
ScopusID: 6602192623

Bd.2, 13 Izhorskaya Str. Moscow, 125412, Russia

 



References

1. Kleissl J. Solar Energy Forecasting and Resource Assessment. AcademicPress, 2013; 462 p.

2. Antonanzas J., Osorio N., Escobar R., Urraca R., Martinez-de-Pison F.J., Antonanzas-Torres F. Review of photovoltaic power forecasting. Solar Energy, 2016;136:78–111.

3. Reindl T., Walsh W., Yanqin Z., Bieri M. Energy meteorology for accurate forecasting of PV power output on different time horizons. Energy Procedia, 2017;130:130–138.

4. Chinese GB/T 19964-2012. Technical requirements for connecting photovoltaic power stations to power systems.

5. Decree of the Russian Federation Government, December 27, 2010 No. 1172 “On approval of the electric energy and power wholesale market Rules and on amendments to some acts of the Russian Federation Government on the organization of the functioning of the electric energy and power” (as amended) (Postanovleniye Pravitel'stva RF ot 27 dekabrya 2010 g. № 1172 “Ob utverzhdenii Pravil optovogo rynka elektricheskoy energii i moshchnosti i o vnesenii izmeneniy v nekotoryye akty Pravitel'stva Rossiyskoy Federatsii po voprosam organizatsii funktsionirovaniya optovogo rynka elektricheskoy energii i moshchnosti” (s izmeneniyami i dopolneniyami) [E-resource]. Available on: https://base.garant.ru/12184415/057c59951136e0a69495 234 cc8729bd2/#block_10000 (11.15.19) (in Russ.).

6. Rules for determining the scope, initiatives and cost of deviations. Appendix 12 to the Agreement on accession to the trading system of the wholesale market. Association “Nonprofit Partnership Market Council for the Organization of an Effective System of Wholesale and Retail Trade in Electric Energy and Power” (Reglament opredeleniya ob"yemov, initsiativ i stoimosti otkloneniy. Prilozheniye 12 k Dogovoru o prisoyedinenii k torgovoy sisteme optovogo rynka. Assotsiatsiya “Nekommercheskoye partnerstvo Sovet rynka po organizatsii effektivnoy sistemy optovoy i roznichnoy torgovli elektricheskoy energiyey i moshchnost'yu”) [Eresource]. Available on: https://lk.npsr.ru/sites/default/files/sr_regulation/reglaments/r12_010 12018_24012018.pdf. 179 p. (11.15.19) (in Russ.).

7. Engel E.A. Forecasting the generation of electrical energy from a solar power plant based on a recurrent neural network (Prognozirovaniye vyrabotki elektricheskoy energii solnechnoy elektrostantsii na osnove rekurrentnoy neyroseti). Materials of the IX International Conference “Large-scale Systems Development Management (MLSD'2016)”. 2016: 436–439 (in Russ.).

8. Vorotyntsev D.V., Tyagunov M.G. Forecast of electricity generation by photovoltaic power plants (one day ahead) using machine learning (Prognoz vyrabotki elektroenergii fotoelektricheskimi elektrostantsiyami (na sutki vpered) s ispol'zovaniyem mashinnogo obucheniya). Vestnik Moskovskogo Energeticheskogo Instituta (Vestnik MEI). 2018;4:53–57 (in Russ.).

9. Anufriev O.V., Vorotyntsev D.V., Krapivko P.V., Tyagunov M.G. Forecast hourly production of FES for a day ahead using machine learning (Prognoz pochasovoy vyrabotki FES na sutki vpered s ispol'zovaniyem mashinnogo obucheniya). Fedorov readings – 2017. XLVII International scientific-practical conference with elements of a scientific school. – Moscow: MEI Publishing House. 2017:305–311 (in Russ.).

10. Snegirev D.A., Eroshenko S.A., Valiev R.T., Khalyasmaa A.I. Possibilities for the algorithmic implementation of solar power generation short-term forecasting (Vozmozhnosti algoritmicheskoy realizatsii kratkosrochnogo prognozirovaniya vyrabotki solnechnykh elektrostantsiy). All-Russian Scientific Conference on Management Problems in Technical Systems.– St. Petersburg: St.-Petersburg Electrotechnical University “LETI”, 2017; 1 236–239 (in Russ.).

11. Snegirev D.A., Valiev R.T., Eroshenko S.A., Khalyasmaa A.I. Features of forecasting electricity generation by solar power plants (Osobennosti prognozirovaniya vyrabotki elektroenergii solnechnymi elektrostantsiyami. Electricity through the eyes of youth – 2017. Materials of the VIII International Scientific and Technical Conference. – Samara: Samara State Technical University, 2017; pp. 139–142 (in Russ.).

12. Eroshenko S.A., Samoilenko V.O., Snegirev D.A., Khalyasmaa A.I., Obukhova N.V., Valiev R.T., Sheka A.S. Prediction of Solar Power Generation: Implementation Challenges (Yeroshenko S.A., Samoylenko V.O., Snegirev D.A., Khal'yasmaa A.I., Obukhova N.V., Valiyev R.T., Sheka A.S. Prognozirovaniye vyrabotki solnechnykh elektrostantsiy: problemy realizatsii). [Eresource]. Available on: http://cigre.ru/activity/conference/seminar_c6/materials/ Prezent_Solar.Forecast_Eroshenko_30.11.17.pdf. (01.30.2020) (in Russ.).

13. Abrukov V.S., Kochakov V.D., Abrukov S.V., Anufrieva D.A., Vasilyev A.I., Smirnov A.V. Intelligent system for forecasting of the solar power plants work (Intellektual'naya sistema prognozirovaniya raboty solnechnykh elektrostantsii). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2017;16–18:30–42 (in Russ.).

14. Melnikova A.A., Rafikova Y.Y. Multi-step analysis to estimate the conditions for the implementation of solar energy installations (Metodika otsenki uslovii vnedreniya ob"ektov solnechnoi energetiki). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2016;15–18:12–23 (in Russ.).

15. Gabderakhmanova T.S., Kiseleva S.V., Zaytsev S.I., Tarasenko A.B., Shakun V.P. Use of solar photovoltaic systems: monitoring and performance evaluation results (Ispol'zovanie solnechnykh fotoenergeticheskikh ustanovok: rezul'taty monitoringa i prognoza proizvoditel'nosti). International Scientific Journal for Alternative Energy and Ecology (ISJAEE). 2015;19:48–54 (in Russ.).

16. Kiseleva S.V., Kolomietc Y.G., Popel O.S., Tarasenko A.B. The effectiveness of the solar energy use for power supply in the climatic conditions of Kyrgyzstan (Otsenka effektivnosti fotoelektricheskikh stantsii v klimaticheskikh usloviyakh Kyrgyzstana). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015;1:14–25 (in Russ.).

17. Avdzhyan N.S., Armaganyan E.G., Dvornyy V.V., Kirichenko A.S., Amerkhanov R.A. Renewable energy potential of Krasnodar territory (Potentsial Krasnodarskogo kraya v oblasti vozobnovlyaemoi energetiki). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2017;13–15:24–36 (in Russ.).

18. Kolomiets Y.G., Gorbarenko E.V., Kiseleva S.V., Mordynskiy A.V., Frid S.E., Shilovtseva O.A. Actinometric data for the design of solar power in the Moscow region (Aktinometricheskie dannye dlya proektirovaniya solnechnykh energoustanovok v Moskovskom regione). International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2016;21–22:12–24 (in Russ.).

19. Group of companies “Hevel” [E-resource]. Available on: https://www.hevelsolar.com/. (01.30.2020) (in Russ.).

20. Group of companies “Solar Systems” [Eresource]. Available on:// http://solarsystems.msk.ru/. (01.30.2020) (in Russ.).

21. Inman R.H., Pedro H.T.C., Coimbra C.F.M. Solar forecasting methods for renewable energy integration. Prog. Energy Combust., 2013;39:535–576.

22. IEA-Photovoltaic and solar forecasting: state-ofthe-art. Report IEA-PVPS T14-01:2013.

23. ] Ren Y., Suganthan P., Srikanth N. Ensemble methods for wind and solar power forecasting – a stateof-the-art review. Renew. Sustain. Energy Rev., 2015;5082–5091.

24. Wan C., Zhao J., Song Y., Xu Z., Lin J., Hu Z. Photovoltaic and solar power forecasting for smart grid energy management. CSEE J. Power Energy Syst., 2015;1(4):38–46.

25. Diagnea M., Mathieu D., Lauret P., Boland J., Schmutz N. Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew. Sustain. Energy Rev., 2013;27:65–76.

26. Chaturvedi D.K., Isha I. Solar Power Forecasting: A Review. International Journal of Computer Applications, 2016;145(6):28–50.

27. Yang D., Kleissl J., Gueymard C. A., Pedro H.T.C., Coimbra C.F.M. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Solar Energy, 2018;168:60–101.

28. Weather Research and Forecasting [E-resource]. Available on:// http://www.wrf-model.org/. (10.18.19) (in Russ.).

29. European Centre for Medium-Range Weather Forecasts [E-resource]. Available on: http://www.ecmwf.int/. (10.18.19) (in Russ.).

30. NCAR (Национальный центр исследований атмосферы США) [E-resource]. Available on:// https://ral.ucar.edu/pressroom/features/wrf-solar/. (18.10.19). (in Russ.).

31. Coimbra C., Pedro H. Stochastic-learning methods. In: Kleissl, J. (Ed.), Solar Energy Forecasting and Resource Assessment, first ed. Academic Press, Waltham, 2013; pp. 383–406.

32. Urraca R., Antonanzas J., Alia-Martínez M., Martínez-de-Pisón F.J., Antonanzas-Torres F. Smart baseline models for solar irradiation forecasting. Energy Convers. Manag., 2016;108:539–548.

33. Dolara A., Leva S., Manzolini G. Comparison of different physical models for PV power output prediction. Solar Energy, 2015;119:83–99.

34. Ayompe L.M., Duffy A., McCormack S.J., Conlon M. Validated real-time energy models for small-scale gridconnected PV-systems. Energy, 2010;35(10):4086–4091.

35. PVCROPS, October 2015. Estimation of the PV power that can be integrated incurrent EU networks. Deliverable D5.5.

36. Almeida M.P., Perpiñán O., Narvarte L. PV power forecast using an on parametric PV model. Solar Energy, 2015;115:354–368.

37. Pedro H.T.C., Coimbra C.F.M. Assessment of forecasting techniques for solar power production with no exogenous inputs. Solar Energy, 2012;86:2017–2028.

38. Ogliari E., Grimaccia F., Leva S., Mussetta M. Hybrid predictive models for accurate forecasting in PV systems. Energies, 2013;6:1918–1929.

39. Simonov M., Mussetta M., Grimaccia F., Leva S., Zich R. Artificial intelligence forecast of PV plant production for integration in smart energy systems. Int. Rev. Electr. Eng., 201;7(1):3454–3460.

40. Fonseca J.G., Oozeki T., Takashima T., Koshimizu G., Uchida Y., Ogimoto K. Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan. Progress in Photovoltaics: Research and Applications, 2012;20(7):874–882

41. Vaz A., Elsinga B., van Sark W., Brito M. An artificial neural network toassess the impact of neighbouring photovoltaic systems in power forecasting in Utrecht, the Netherlands. Renew. Energy, 2016;85:631–641. [

42. Hossain M.R., Oo A.M.T., Ali A.B. Hybrid prediction method for solar power using different computational intelligence algorithms. Smart Grid Renew. Energy, 2013:4:76–87.

43. Almonacid F., Perez-Higueras P., Fernandez E., Hontoria L. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator. Energy Convers. Manag., 2014;85:389–398.

44. Bracale A., Caramia P., Carpinelli G., Di Fazio A., Ferruzzi G. A Bayesian method for short-term probabilistic forecasting of photovoltaic generation in smart grid operation and Control. Energies, 2013;6:733–747.

45. Mora-Lopez L., Martinez-Marchena I., Ppiliougine M., Sidrach-deCardona M. Machine learning approach for next day energy production forecasting in grid connected photovoltaic plants. In: World Renewable Energy Congress, Linköping, Sweden 8–13 May 2011.

46. Gandelli A., Grimaccia F., Leva S., Mussetta M., Ogliari E. Hybrid model analysis and validation for PV energy production forecasting. In: International Joint Conference on Neural Networks (IJCNN), July 6-11, Beijing, China, 2014.

47. Dolara A., Leva S., Manzolini G. Comparison of different physical models for PV power output prediction. Solar Energy, 2015;119:83–99.

48. Lipperheide M., Bosch J., Kleissl J. Embedded nowcasting method using cloud speed persistence for a photovoltaic power plant. Solar Energy, 2015;112:232– 238.

49. Hong T., Pinson P., Fan S., Zareipour H., Troccoli A., Hyndma R.J. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. Int. J. Forecast, 2016;32(3):896–913.

50. Alessandrini S., Delle Monache L., Sperati S., Cervone G. An analog ensemble for short-term probabilistic solar power forecast. Appl.Energy, 2015;157:95–110.

51. Huang J., Perry M. A semi-empirical approach using gradient boosting and k nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting. Int. J. Forecast., 2016;32(3):1081–1086.

52. Golestaneh F., Pinson P., Gooi H.B. Very shortterm nonparametric probabilistic forecasting of renewable energy generation-with application to solar energy. IEEE Trans. Power Syst., 2016;31(5):3850–3863.

53. Van der Meer D.W., Widén J., Munkhammar J. Review on probabilistic forecasting of photovoltaic power production and electricity consumption. Renew. Sustain. Energy Rev., 2018;81:1484–1512.

54. Rana M., Koprinska I., Agelidis V. 2D-interval forecasts for solar power production. Solar Energy, 2015;122:191–203.

55. Sobri S., Koohi-Kamali S, Rahim N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag., 2018;156:459–497.

56. Ssekulima E.B., Anwar M.B., Hinai A.A., Moursi M.S.E. Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review. IET Renew. Power Gener., 2016;10(7):885–898.

57. Nobre A, Severiano C, Karthik S, Kubis M, Zhao L, Martins FR, Pereira EB, Rather R, Reindl T. PV power conversion and short-term forecasting in a tropical, densely-built environment in Singapore. Renewable Energy, 2016;94:496–509.

58. Hyndman R.J., Koehler A.B., Ord J.K., Snyder R.D. Forecasting with Exponential Smoothing. Springer, Deblik, Berlin, Germany. 2008.

59. Espinar B., Ramírez, L., Drews, A., Beyer, H.G., Zarzalejo, L., Polo, J., Martín, L. Analysis of different comparison parameters applied to solar radiation data from satellite and German radiometric stations. Solar Energy, 2009;83(1):118–125.

60. Chu Y., Li M., Coimbra C.F.M. Sun-tracking imaging system for intra-hour DNI forecasts. Renew. Energy, 2016;96(A):792–799.

61. Matheson J.E., Winkler R.L. Scoring rules for continuous probability distributions. Manage. Sci., 1976;22:1087–1096.

62. Mellit A., Massi Pavan A., Lughi V. Short-term forecasting of power production in a large-scale photovoltaic plant. Solar Energy, 2014;105:401–413.

63. Lonij V., Brooks A., Cronin A., Leuthold M., Koch K. Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors. Solar Energy, 2013;97:58–66.

64. 64] Kaur A., Nonnenmacher L., Pedro H.T.C., Coimbra C.F.M. Benefits of solar forecasting for energy imbalance markets. Renew. Energy, 2016;86:819–830.

65. Russo M., Leotta G., Pugliatti P., Gigliucci G. Genetic programming for photovoltaic plant output forecasting. Solar Energy, 2014;105:264–273.

66. Mills A., Wiser R. Implications of Wide-Area Geographic Diversity for Short-Term Mills A., Wiser R. Implications of Wide-Area Geographic Diversity for Short-Term Variability of Solar Power. LBNL-3884E. Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, Berkeley, CA, 2010.

67. Perez R., Hoff T., Kivalow S. Spatial and temporal characteristics of solar radiation variability. In: Proc. of International Solar Energy (ISES) World Congress, Kassel, Germany, 2011.

68. Lorenz E., Hurka J., Karampela G., Heinemann D., Beyer H.G., Schneider M. Qualified forecast of ensemble power production by spatially dispersed grid connected PV systems. In: 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1–5 September, 2008.

69. Lorenz E., Kuhnert J., Wolff B., Hammer A., Kramer O., Heinemann D. PV power predictions on different spatial and temporal scales integrating PV measurements, satellite data and numerical weather predictions. In: 29th EUPVSEC, 22–26. September 2014, Amsterdam, Netherlands. 2014.

70. Zhang J., Florita A., Hodge B.M., Lu S., Hamann H., Banunarayanan V., Brockway A. A suite of metrics for assessing the performance of solar power forecasting. Solar Energy, 2015;111:157–175.

71. Mathiesen P., Kleissl J., Collier C. Case studies of solar forecasting with the weather research and forecasting model at GL-Garrad Hassan. In: Kleissl, J. (Ed.). Solar Energy Forecasting and Resource Assessment, first ed. AcademicPress, Waltham, 2013; pp. 357–381.

72. Zhang J., Hodge B.M., Lu S., Hamann H., Lehman B., Simmons J., Campos E., Banunarayanan V., Black J., Tedesco J. Baseline and target values for regional and point PV power forecasts: toward improved solar forecasting. Solar Energy, 2015;122:804–819.

73. Mills A., Botterud A., Wu J., Zhou Z., Hodge B.M., Heaney M. Integrating solar PV in utility system operations. ANL/DIS-13/18. Argonne National Laboratory, 2013.

74. Cormode D., Lorenzo A., Holmgren W., Chen S., Cronin A. The economic value of forecasts for optimal curtailment strategies to comply with ramp rate rules. In: IEEE 40th Photovoltaic Specialist Conference (PVSC). 8–13 June, Denver, Co. 2014.

75. Decree of the Russian Federation Government, May 28, 2013 N 449 (as amended on September 27, 2018) “On the mechanism for stimulating the use of renewable energy sources in the electric energy and power wholesale market” [E-resource]. Available on: http://www.consultant.ru/document/cons_doc_LAW_14 6916/ (01.25.2020) (in Russ.).

76. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Renewable energy progress report Brussels, 15.6.2015. [E-resource]. Available on: http://www.enmc.pt/staticimg/2015-08/2015-08-12143230_f7664ca7-3a1a-4b259f46-2056eef44c33$$72f445d4-8e31-416a-bd01d7b980134d0f$$75529271-1fdf-4cd3-9a34672e4ed1e2a4$$File$$pt$$1.pdf. (01.25.2020).


Review

For citations:


Kiseleva S.V., Lisitskaya N.V., Frid S.E. Photovoltaic Power Forecasting: Basic Approaches and Features. Alternative Energy and Ecology (ISJAEE). 2020;(7-18):24-42. (In Russ.) https://doi.org/10.15518/isjaee.2020.07-18.24-43

Views: 2073


ISSN 1608-8298 (Print)