

Modeling the performance of solar concentrator modules based on artificial neural network algorithms
https://doi.org/10.15518/isjaee.2020.11.004
Abstract
Since the performance of solar power plants is quite variable, the dependence of production on weather conditions significantly increases the need for accurate forecasting. At present, the formation of a new approach to the development of predictive models of the performance of solar power plants based on artificial neural network algorithms is acquiring special relevance. The advantages of artificial neural networks in forecasting, such as the ability to learn and take into account a set of parameters that are not in a functional connection, make it possible to successfully use them in the development of models of the performance of solar power plants. The analysis of existing developments is carried out and promising areas of application of artificial intelligence algorithms in solar energy are determined. To simulate the performance of a solar concentrator module, a two-layer artificial neural network with sigmoid hidden neurons and linear output neurons has been developed. The developed performance model of a solar concentrator module based on an artificial neural network makes it possible, with a significant approximation, to determine the thermal efficiency of a solar module depending on various external conditions and operating parameters.
About the Author
N. S. FilippchenkovaRussian Federation
Filippchenkova Natalia Sergeevna - PhD., Leading Engineer, JSC UE
Raushskaya embankment, 8, Moscow, 115035 tel..:+7(495) 657-91-01
References
1. Khaikin, S. Neironnye seti: polnyi kurs / S. Khaikin. - 2-e izd., per. s angl. - M.: Vil'yams, 2006. -1104 s.
2. Kalogirou, S.A. / Artificial neural net-works for modelling the starting-up of a solar steam-generator / S.A. Kalogirou, C.C. Neocleous, C.N.Schizas // Applied Energy. - 1998. - V. 60. - P. 89-100.
3. Almonacid, F. / Characterisation of Sicrystal line PV modules by artificial neural Networks / F. Almonacid, C. Rus, L. Hontoria, M. Fuentes, G.Nofuentes // Renewable Energy. - 2009. - V. 34. -P. 941-949.
4. Sozen, A. / Determination of efficiency of flat-plate solar collectors using neural network approach / A. Sozen, T. Menlik, S. Unvar // Expert Systems with Applications. - 2008. - V. 35. - P. 15331539.
5. Esen, H. / Artificial neural network and wavelet neural network approaches for modelling of a solar air heater / H. Esen, F. Ozgen, M. Esen, A. Sengur // Expert Systems with Applications. - 2009. - V. 36. -P. 11240-11248.
6. Larbes, C. / Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system / C. Larbes, S.M.Ait Cheikh, T. Obeidi, A. Zerguerras // Renewable Energy. - 2009. - V. 34. - P. 2093-2100.
7. Zagrouba, M. / Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extrac-tion /M. Zagrouba, A. Sellami, M. Bouaicha, M. Ksouri // Solar Energy. - 2010. - V. 84. - №. 5 - P. 860-866.
8. Kalogirou, S.A. / Optimization of solar systems using artificial neural-networks and genetic algorithms / S.A. Kalogirou // Applied Energy. - 2004. - V. 77. - P. 383-405.
9. Sanchez, E.N. / Electric load demand prediction using neural networks trained by Kalman Filtering / E.N. Sanchez, A.Y. Alanis, J. Rico // IEEE International Joint Conference on Neural Networks, Budapest, Hungary. -2004. - V.4. - P. 2771-2775. DOI: 10.1109/IJCNN.2004.1381093.
10. Lippmann, R.P. / An introduction to computing with neural nets / R.P. Lippmann // IEEE ASSP Magazine. - 1987. - V.4(2). - P. 4-22.
11. Rumelhart, D. / Learning internal representations by error propagation / D.Rumelhart, E. Geoffrey, R.J. Williams // Parallel distributed processing: explorations in the microstructure of cognition. -1986. -V.1. - P. 282-317.
12. Saraev, P.V. Identifikatsiya neirosetevykh modelei / P.V. Saraev. -L.: Izd-vo LGTU, 2011. - 94 s.
13. Khaikin, S. Preimushchestva i ogranicheniya obucheniya metodom obratnogo rasprostraneniya / S. Khaikin. - 2-e izd., per. s angl. - M.: Vil'yams, 2006. -314 s.
14. Parkhomenko, S.S. / Obuchenie neironnykh setei metodom Levenberga-Markvardta v usloviyakh bol'shogo kolichestva dannykh / S.S. Parkhomenko, T.M. Ledeneva // Vestnik Voronezhskogo gosudarstvennogo universiteta.- 2014. - № 2. - S. 98-106.
15. Yousif, J.H. / A comparison study based on artificial neural network forassessing PV/T solar energy production / J.H. Yousif, H.A. Kazem, N.N.Alattar, I.I. Elhassa // Case Studies in Thermal Engineering. -2019. - V. 13. - P. 1-13. DOI: 10.1016/j.csite.2019.100407.
16. O’Leary, D./ Feature Selection and ANN Solar Power Prediction / D. O’Leary, J. Kubby // Hindawi. -2017. - V.2017. - P. 1-7. DOI: 10.1155/2017/2437387.
17. Strebkov, D.S. / Nesledyashchie solnechnye kontsentratory s zhalyuziinymi geliostatami: mezhlamel'nye ehffekty / D.S. Strebkov, A.E. Irodionov, N.S. Filippchenkova // Geliotekhnika. - 2015. - № 4. - C. 7278.
18. Strebkov D.S. / Ehksperimental'noe issledovanie solnechnykh kontsentratornykh modulei s zhal-yuziinymi geliostatami / D.S.Strebkov, A.E. Irodionov, N.S. Filippchenkova // Materialy Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem i XI nauchnoi molodezhnoi shko-ly «Vozobnovlyaemye istochniki ehnergiI». - 2018. - S. 188-195.
19. Strebkov, D.S. / Nontracking solar concentrators with louver heliostats: bar-to-bar effects / D.S. Strebkov, A.E. Irodionov, N.S. Filippchenkova // Applied Solar Energy. - 2015. - V. 51. - № 4. - P. 306310.
20. Strebkov, D.S. / Nontracking Solar Concentrators with louvered heliostats: A Calculation Algorithm / D.S. Strebkov, A.E. Irodionov, N.S.Filippchenkova // Applied Solar Energy. -2017. -V. 53. - № 1. - P. 39-44.
Review
For citations:
Filippchenkova N.S. Modeling the performance of solar concentrator modules based on artificial neural network algorithms. Alternative Energy and Ecology (ISJAEE). 2020;(31-33):42-48. (In Russ.) https://doi.org/10.15518/isjaee.2020.11.004